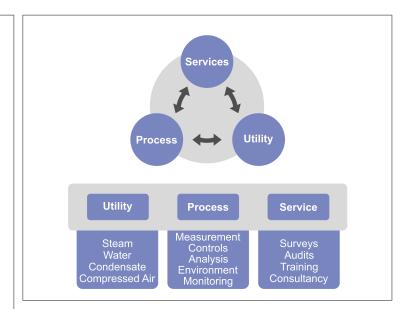


Solutions to Enhance Profitability in Refinery and Petrochemical Industry


Index

•	Introduction	1	
•	Various Steam Traps at a Glance	2	
•	 Determination of Steam Loss Through Automatic Steam Traps Test results for live steam loss : FMTD64 Thermodynamic Trap Test results for live steam loss : FMTLT53 Thermostatic Trap 	4 5	
•	Steam Trap Life Cycle Cost for 5 Years (EN27841)	6	
•	 Case Studies Recovery of Flash Steam and Condensate in SRU Improved Stripping Steam Quality through Improved Dryness Fraction Flash Steam and Condensate Recovery in Tank Farm Area Reduce Pump Seal Failure by Ensuring Correct Pressure and Dry Steam Perfect Fuel Atomisation to Stop Wastage and Improve Efficiency Condensate Evacuation Made Easy Even under Stall Conditions (Lean Amine Heater) Effective Condensate Evacuation for Large Condensate Loads Against High Back Pressure 	7 8 9 10 11 12 13	
•	Heat Tracing : Steam V/s Electrical	14	
•	Credentials in Steam Trap System Management	15	
•	We Are Near You	16	
•	Accreditation		

T FORBES

For over 75 years, Forbes Marshall has been providing innovative solutions to help the oil and petrochemical industry run reliable and energy efficient plants with reduced downtime, improved productivity, product quality and process yield. By identifying and reducing opportunities for waterhammer to occur, we help improve piping and equipment reliability, and prevent the occurrence of large scale safety problems. Our flash steam and condensate recovery solutions maximise energy utilisation while contributing to reduced plant emissions.

Each year, through our solutions and asset management programmes, we help the Industry save, 4.4 million metric tonnes of steam, 6.8 million litres of water, recover 2.4 million litres of condensate and reduce 0.3 million tonnes of CO₂.

Areas of Expertise

We specialise in a vast range of products, systems, packages and services in the following three areas -

Energy Conservation

- Steam & condensate systems
- Energy services

Utility Management

- Air efficiency solutions
- Remote online pollution monitoring
- · Hydro-carbon loss monitoring

Process Efficiency

- Metering solutions
- Mechanical valves
- Control valves and stations
- Machine condition monitoring systems

Forbes Marshall's Presence in Encon Initiatives

Activity	No. of Refineries	Trap Population	Uptime
Audits of steam trap system	20 out of 21 in India	2,20,000	
Steam trap system management	20 out of 21 in India	1,10,000	> 95%
Condensate and flash steam recovery	15 out of 21 in India	70,000	

Various Steam Traps At A Glance			
Туре	Thermodynamic	Balanced Pressure Thermostatic	
Governor	Disc	Capsule	
Governing Factor	Velocity difference (Bernoulli's principle)	Temperature difference	
Main Features	 Robust design Excellent resistance to waterhammer and vibration Inexpensive Positive discharge with tight shut-off Discharge condensate close to steam saturation temperature 	 Utilises sensible heat present in the condensate thereby reducing flash steam losses and saving energy Excellent air venting properties for quick start-up 	
Application : Main Header Line (Saturated Steam)	First priority	Not recommended	
Application : Main Header Line (Superheated Steam)	First priority	Not recommended	
Application : Critical Tracing	First priority	Not recommended	
Application : Tracing (Saturated Steam)	Not recommended	First priority	
Application : Tracing (Superheated Steam)	Second priority	Not recommended	
Application : Heating	Not recommended	Not recommended	
Pressure Range	Upto 250 bar	Upto 32 bar	
% Population in a Refinery and Petrochemical Plant	30%	60%	
Cost Effectiveness	Excellent	Excellent	
Compactness	Excellent	Excellent	
Spares Inventory	Minimal	High	
Repair and Maintenance	Very quick and easy	Quick and easy	
Steam consumed / functional loss for functioning of the steam trap as per BS EN 27841 steam trap standard (expressed in kg/hr at 5bar steam pressure)	Upto 0.2 kg/hr	0.5 kg/hr	

Note : The purpose of the above table is not to establish the fact that one type of trap is more effi of energy. Losses only become significant when traps are defective. The important thing therefore and steam wastage will be minimised.

Bimetallic Thermostatic	Mechanical		
Thermostauc	Ball Float	Inverted Bucket	
Bimetallic strips/element	Ball float	Inverted bucket	
Temperature difference	Buoyancy principle (density difference)	Buoyancy principle (density difference)	
 Utilises sensible heat present in the condensate thereby reducing flash steam losses and saving energy Excellent air venting properties for quick start-up 	 High capacity Excellent air venting capabilities Continuous discharge of condensate for maximum heat transfer Will not back-up with condensate 	 High capacity Robust design Near continuous discharge of condensate Minimal back-up of condensate 	
Not recommended	Second priority	Second priority	
Second priority	Not recommended	Not recommended	
Not recommended	Second priority	Second priority	
Second priority	Third priority	Third priority	
First priority	Not recommended	Not recommended	
Not recommended	First priority	Second priority	
Upto 210 bar	Upto 80 bar	Upto 110 bar	
2%	6%	2%	
Fair	Very good	Good	
Good	Good	Fair	
High	High	High	
Time consuming	Time consuming	Time consuming	
0.5 kg/hr	0.4 kg/hr	1.2 kg/hr	

cient than another. It is simply to show that steam traps require only a minimal amount e is to combine selection, checking and maintenance to achieve reliability. If properly done, costs

Determination of Steam Loss Through Automatic Steam Traps

Forbes Marshall Private Limited Regd. Office A-34 / 35, MIDC, H-Block Pimpri, Puet 411 018 India T +91 20 27442020 T +91 20 39851100 F +91 20 27442040.

Factory Address B-85, Phase II, Chakan Indi Area Sawardari, Chakan, Tal. Khed, Dist. Pune 410501 India

T +91 2135 393400

www.forbesmarshall.com

CIN No.: U28996PN1985PTC037806

TEST RESULTS FOR LIVE STEAM LOSS THROUGH STEAM TRAP

TEST DATE :	7 th December 2017			
STANDARD :	BS EN 27841: (Methods for Determination of steam loss of			
TEST METHOD :	automatic steam trap) A			
TRAP TYPE :	FMTD64 (Forbes Marshall Thermodynamic Trap)			
TRAP SIZE :	15NB			
UPSTREAM PRESSURE :	5 bar (g)			
STEAM LOSS (Kg/hr) :				
	No load condition Load condition			
	0.2 0			
Azuetto	ASIA			
TEST CONDUCTED BY	IS TURSEWITNESSED BY			
Abhijit Jadhav	Supersynand Deshpande			
Forbes Marshall	⁰ ² Head- Certification			
Forbes Marshall Krohne Marshall Forbes Marshall Arca Codel International Forbes Solar Forbes Vyncke	TUV SUD South Asia			
Forbes Marshall Steam Systems	Energy Conservation Environment Process Efficiency			

Determination of Steam Loss Through Automatic Steam Traps

FORBES MARSHALL

Forbes Marshall Private Limited Regd. Office A-34 / 35, MIDC, H-Block Pimpri, Pune 411 018 India T +91 20 27442020 T +91 20 39851100 F +91 20 27442040.

Factory Address B-85, Phase II, Chakan Indi Area Sawardari, Chakan, Tal. Khed, Dist. Pune 410501 India

T +91 2135 393400

www.forbesmarshall.com

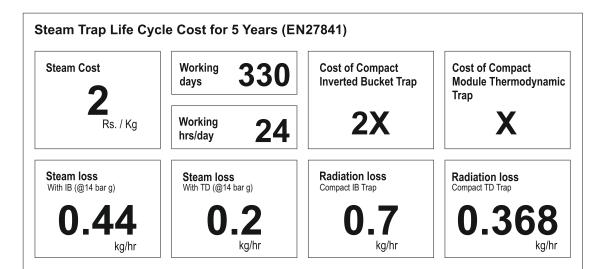
CIN No.: U28996PN1985PTC037806

TEST RESULTS FOR LIVE STEAM LOSS THROUGH STEAM TRAP

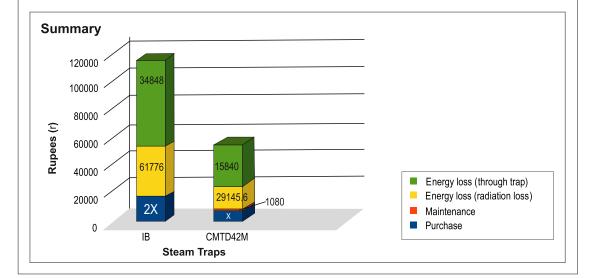
TEST DATE : 7th December 2017

 STANDARD :
 BS EN 27841: (Methods for Determination of steam loss of automatic steam trap)

 TEST METHOD :
 A

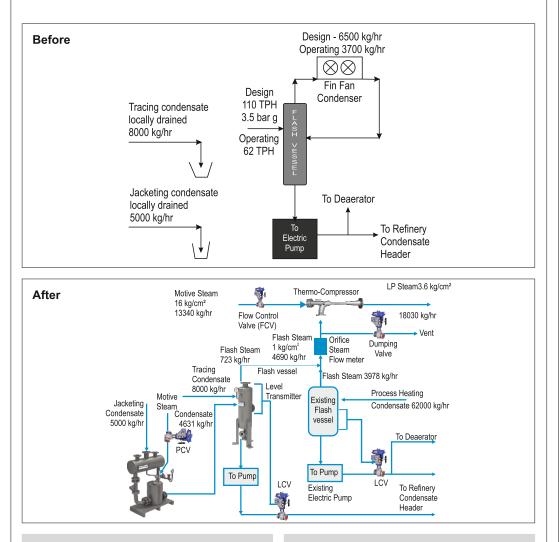

TRAP TYPE : FMTLT53 (Forbes Marshall Tracer Line Trap)

TRAP SIZE : 20NB


UPSTREAM PRESSURE : 5 bar (g)

STEAM LOSS (Kg/hr) :

	No load condition	Load condition
	0	0
togenthe	-	ASIA
TEST CONDUCTED BY		TEST WITNESSED BY
Abhijit Jadhav		May Anand Deshpande
Forbes Marshall		Head- Certification
Forbes Marshall Krohne Marshall Forbes Marshall Arca Codel International		TUV SUD South Asia
Forbes Solar Forbes Vyncke Forbes Marshall Steam Systems		Energy Conservation Environment Process Efficiency



Calculations			
Sr.No.	Description	IB Trap with TVS4000	CMTD42M
1	Energy loss (through trap)		
	Steam loss in kg / year	3484.8	1584
	Steam loss in kg / 5 years	17424	7920
	Steam loss in Rs. / 5 years	34848.00	15840.00
2	Maintenance cost for 5 years		
	Trap Replacement percent per year	0	3
	Maintenance cost (5 years)	0	1080
3	Radiation losses from trap		
	Steam loss in kg / year	6177.6	2914.56
	Steam loss in kg / 5 years	30888	14572.8
	Steam loss in Rs. / 5 years	61776.00	29145.60
4	Initial cost	2X	Х

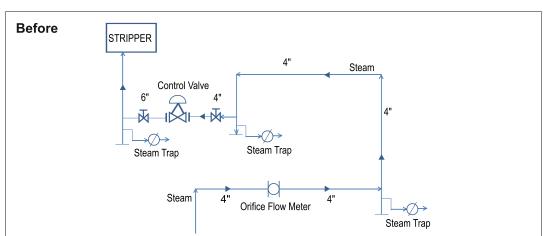
Case Studies

Recovery of Flash Steam and Condensate in SRU Payback in 3 Months

Benefits

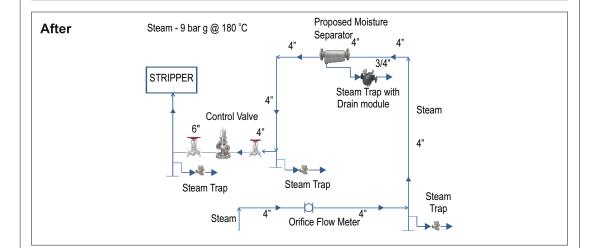
Improve energy performance (MBN)

Reduce wastage of steam and condensate

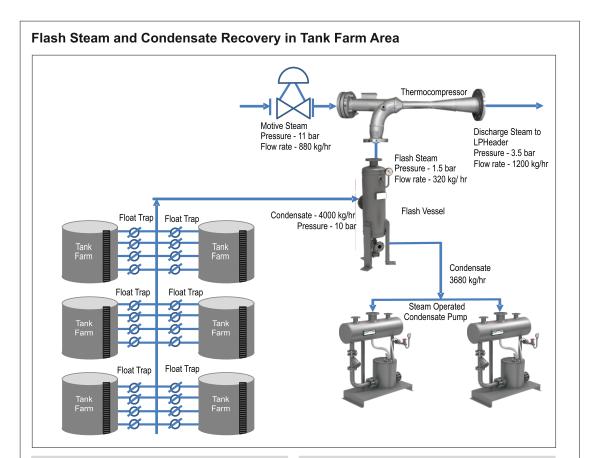

Increase gross refinery margin

Reduce utility cost

Monetary Savings per Annum


Flash Steam – INR 675 lacs Condensate – INR 29 lacs Payback in 3 Months

Improved Stripping Steam Quality Through Improved Dryness Fraction


Before

Wet steam affects the quality of the final product Higher steam consumption

After

Quality of final product improved Reduced steam consumption

Before

Condensate getting drained Group trapping with one trap Uneven heating of product Wrong selection of traps

After

Flash steam and condensate recovered

Individual trapping leading to uniform heating of product at required temperature with optimum steam consumption

Application wise correct selection of traps

Reduce Pump Seal Failure by Ensuring Correct Pressure and Dry Steam

Objective – To reduce pump seal failure by controlling pressure and removing condensate to ensure dry steam reaches the pump seal.

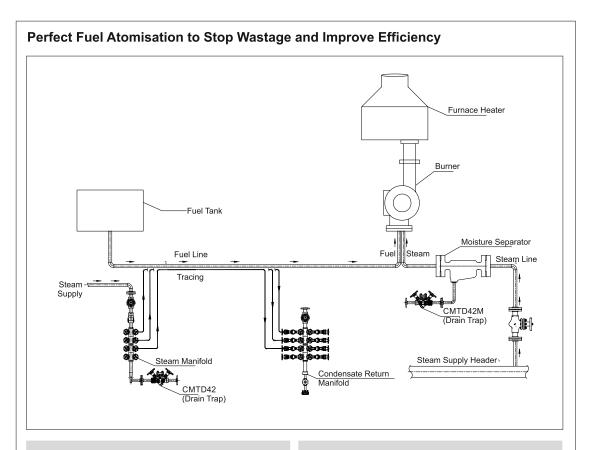
Piping plan 62 of API 682/ISO21049 specifies that environment on the atmospheric side of single seals can be improved by quenching with steam. The average number of pumps under plan 62 in a 6 MMTPA is in the range of 40 to 50.

Steam quenching is essential for long seal life and as a safety measure for a number of high temperature and heavy hydrocarbon duties. Most common pump problems include seal failures associated with inadequate or the lack of a steam quench, which is used to prevent coke formation and to cool the seal at high temperatures or to heat the seal faces on some medium temperature hydrocarbon residue duties.

The provision of dry steam flow at pressure below 1 bar g is not a simple task. Over pressurisation will cause early seal failure. Steam traps and insulation are essential. Site surveys often find a flow of tepid water to the seal, which on hot duties flash off into steam in a dramatic fashion causing pressure pulsation at seal.

Initial Problems

Failure of pump seal


Root Cause

All pumps encounter condensate carry over with steam at the pump seal because of wrong installation of the trap and routing which causes the pump seal to fail.

Solution

Steam should be dry saturated before it is utilised. We recommend the installation of a single module comprising of a self-acting pressure reducing valve and a moisture separator in the supply line of quenching steam.

This will ensure that the steam supply is dry saturated and pressure is controlled precisely as per API norms. Also, all the condensate deposited in the drain pocket can be easily removed through the trap. Refer figure above.

Problem

Dribbling of fuel oil from the furnace burner

Low burner efficiency

Cumbersome to maintain the trap under the furnace due to oil spillage

Root Cause

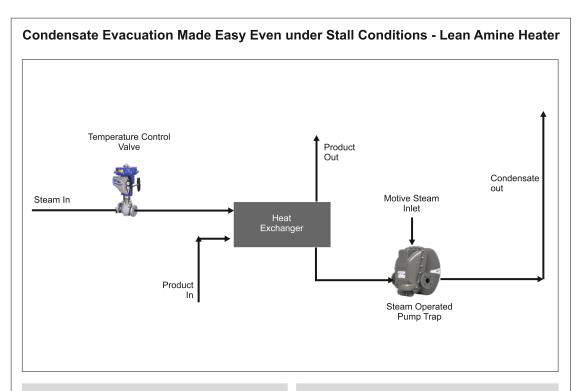
Lack of proper atomisation of fuel oil due to wrong selection of trap in atomisation steam header drain i.e. balance pressure trap is installed instead of thermodynamic trap

Improper heat transfer between tracing and fuel oil because of group trapping in fuel oil tracing line which leads to water logging in the tracing line

Advantages of the Modified System

Proper atomisation of fuel oil in the burner

Thermodynamic trap removes the condensate as soon as it forms in the header


Permissible required temperature of fuel oil maintained resulting in perfect atomisation and hence increased burner efficiency

Dribbling of fuel oil at the burner nozzle reduced, leading to reduction in fuel oil wastage

Correct atomising temperature of fuel oil leads to complete combustion and thereby reduced fuel loss

Piston valve provides positive isolation to the trap with tight shut off bypass valve, vent valve and test valve

Ease of maintenance

Problem

Steam traps are passive devices, which means they need positive differential pressure to evacuate the condensate.

In a lean amine heater, the process parameters are such that the differential pressure across the trap is usually negative. This causes stalling which in turn forces the bypass valve of the steam trap to remain open at all times and results in the passing of live steam along with condensate.

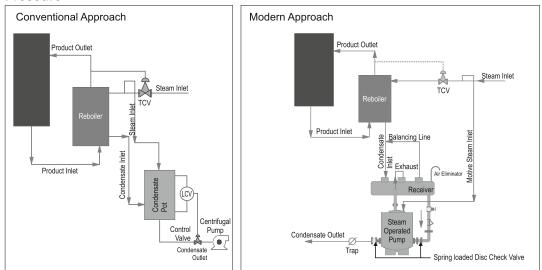
Solution

The installation of a pump and trap combination system will ensure that the heat exchanger is always free from condensate while allowing 100% space to be used for heat transfer using steam.

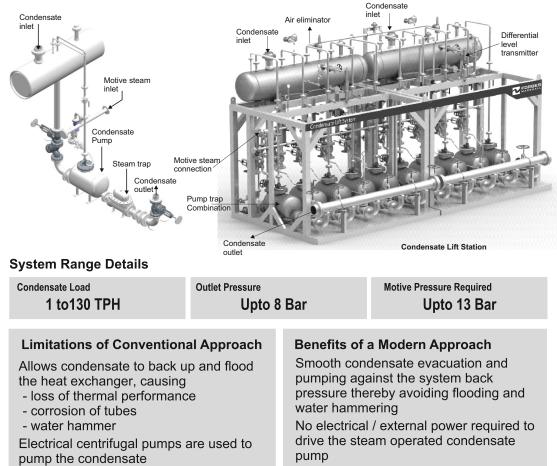
Benefits of the System

The steam operated pump trap maintains uniform heat transfer rate under all conditions

Increased productivity and reduced batch timing due to elimination of moisture which is a barrier to heat transfer

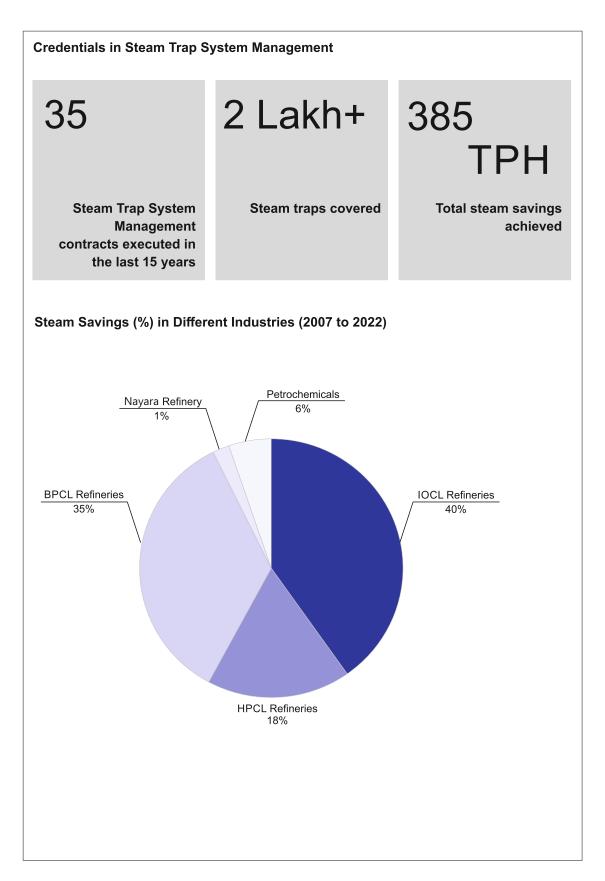

The bypass valve does not need to be opened, thus avoiding steam wastage

The steam operated pump trap saves condensate by returning it to the local condensate collection tank, which was earlier being drained due to negative differential pressure


Safety – no water hammering, no steam leaks or condensate spillage

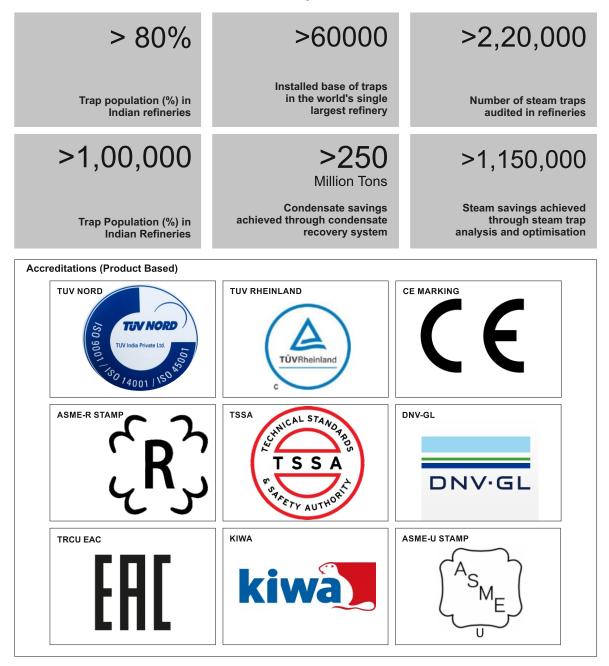
Reduction in corrosion of heat exchanger by avoiding sub-cooled condensate

Effective Condensate Evacuation for Large Condensate Loads Against High Back Pressure



Condensate Pump Trap Combination System

Compact and robust mechanical design


Heat Tracing : Steam V/s Electrical		
Steam Tracing	Electrical Tracing	
LP steam is not generated from direct fuel firing. It is available from LP flash vessels (flash generated from MP and HP condensate), waste heat recovery boilers (process requirements), turbo-drive extraction, etc.	In India, electricity is invariably generated from steam, hence direct fuel firing required	
With closed loop steam tracing system, effective cost of steam required to supply needed heat duty is only the latent heat cost. DM water and sensible heat gets recovered to the boiler, thereby saving these costs as well.	Can't be recovered or reused, hence costlier	
It is non-toxic and fire proof	Possibility of fire hazard	
Less capital investment since steam distribution and condensate recovery is already part of refinery infrastructure	New set up needed, hence higher capital cost	
Steam gets condensed at constant temperature. Hence, heat output is uniform and temperature is easy to control.	Temperature needs to be controlled through RTD or thermostats mounted on pipelines	
Lower operating cost (less than 30-40% of electrical tracing)	High operating costs, advisable only for cross county pipelines where steam distribution and condensate recovery network does not exist	
Semi-skilled manpower is sufficient to maintain new technology steam tracing, without any hot work in a running plant . Hence, maintenance cost is very low.	Specific skilled manpower required.	
Reliable and proven mode of heat tracing	When one considers the use of electricity for heat tracing, specifically in a developing country like India, the reliability of power for uninterrupted delivery, available voltage, and the consequences of outages must be evaluated.	

Our Work in the Oil and Petrochemical Industry

Opp 106th Milestone, CTS No. 2220, Mumbai-Pune Road, Kasarwadi, Pune- 411034 INDIA Tel: +91(0)20-68138555 Fax: +91(0)20-68138402

CIN No.: U28996PN1985PTC037806

www.forbesmarshall.com

Forbes Marshall Krohne Marshall Forbes Marshall Arca Codel International Forbes Vvncke Forbes Marshall Steam Systems liabilities or losses that may be incurred as a consequence of the use of this information.

Email : Replace seg@forbesmarshall.com with opcmktg@forbesmarshall.com

© All rights reserved. Any reproduction or distribution in part or as a whole without written permission of Forbes Marshall Pvt Ltd, its associate companies or its subsidiaries ("FM Group") is prohibited. Information, designs or specifications in this document are subject to change without notice. Responsibility for suitability, selection, installation, use, operation or maintenance of the product(s) rests solely with the purchaser and/or user. The contents of this document are presented for informational purposes only. FM Group disclaims

FMOPC/0119/BR-0904/V4.R0.0123