

Ecotrol[®]

Operational Economy with Optimum Control Control Valves for Process Optimization

Operational Economy with Optimum Control

Forbes Marshall ARCA **ECOTROL**[®] valves are robust, compact, control valves that come with a pneumatically operated, easy field reversible diaphragm actuator and a sturdy, pipeless smart digital positioner. The actuator can be optionally equipped with a fully enclosed emergency hand wheel which is in compliance with general safety precautions.

Why the Ecotrol®

Upgraded Features

The highlight of this valve series is the Forbes Marshall ARCAdouble-life trim (quick-changeable trim combination) with the option of a double-side use by reversing the seat ring. Because of its simple geometry, the valve seat can be economically produced in different materials with or without soft sealing. For soft seating, the PTFE-element is flexibly supported by an additional Elastomer O-Ring located in the seat ring. The additional metal-to-metal sealing of plug and seat ring ensures that the PTFE-disc suitable for double sided use is not plastically deformed by excessive loads.

The difference between the common screwed-in seat ring and this unique quick-changeable trim combination, shown in the figures hereinafter, is because of the principle of retaining and sealing the seat ring in the valve body. With a screwed-in seat ring, the sealing between seat and valve body is provided by the metal-to-metal contact of two conical faces.

The conical counter-face in the valve body has a slightly different angle so that there is only a theoretical circumferential line contact. The required torque to screw-in the seat ring is individually different depending on the construction and the operating conditions. With the **ECOTROL**[®] valve series, the seat sealing is purely axial and achieved by the method of initial compression.

The compression of the sealing elements (6, 11) is limited by the precisely sized recess in the body for containment of the flat gasket. This limits the gasket's compressive loading and guarantees a perfect alignment between the sealing surfaces of plug and seat ring.

The self-aligning seat ring (10) is held by the retaining cage (9). The tightness is achieved by transferring a portion of the bonnet-tobody bolting force via the retaining cage to the seat ring. The valve body (12), retaining cage, and seat ring are manufactured on special CNC-machining centres to meet the stringent tolerance of each part. This guarantees the required compression of the sealing elements. Excellent stem guiding is performed by two special guide bushings (4, 8) located as far as possible from each other.

"New"- the standard spring energised stem seal configuration includes a PTFE-V-ring packing set (5) with an additional microsealing element and wiper ring (3). The PTFE-V-ring packing set is pre-loaded with a stainless steel spring and pressed against the valve stem and the bonnet insert (7). The packing set acts as primary sealing and as a wiper. The valve stem is guided at two locations right before and behind the stem sealing (5). Besides, the extremely reliable sealing performance even under varying operating temperatures, the stem sealing provides minimised static and sliding friction forces in comparison to conventional stuffing box packing.

Cost Saving Benefits

Excellent performance in liquid and gas applications

Extended lifetime due to double-side use by reversing the seat ring (upper and lower side)

Easy and fast assembly, maintenance without any special tools

Prevention of leakage and bypass leakage by a limited compressive load acting on both encapsulated gaskets

Optional: PTFE-soft seat sealing with back-up O-Ring and metal-to-metal end stop

Alternate to the pipeless positioner mounting : mounting acc. to DIN IEC 534 T6 (NAMUR)

Part No.	Name
1	Handwheel assembly
2	Spindle
3	Wiper ring
4	Slide bearing
5	Packing set
6	Body gasket
7	Bonnet
8	Guide bush
9	Cage
10	Seat
11	Gasket
12	Body

Stem Sealing

Depending on the operating conditions, the stem sealing consists of a special sealing configuration to ensure lowest fugitive emission and minimised friction. The stem and the packing bore provide a super finished surface manufactured by the so called roller burnishing process. This process compresses the surface and increases its hardness.

The Standard Maintenance-free PTFE-V-ring Packing with a Micro-sealing Element

To guarantee sealing performance at very low pressures, the PTFE-V-ring packing set is preloaded by a corrosion resistant spring. In a normal operation the sealing lips are pressed against the stem and the packing bore relative to the fluid pressure (pressure energised). To resist the internal pressure resulting from alternating operating conditions the V-Ring set is made of different compounds. The outer packing consists of PTFE with a graphite filling and the centre ring is made of pure PTFE.

The bottom base ring in the V-Ring set acts as a wiper and just allows a small amount of fluid to reach the micro-sealing element. This final sealing element is made of a special elastomer material. Its distance from the top wiper ring is equal to the maximum stroke length. While the valve remains in open position, dirt or any kind of stain may accumulate on the stem part right above the top wiper ring. When the stem moves to the closed position some stain may pass the wiper ring, however, it will never approach the micro-sealing element and cause this element to fail.

Graphite Stuffing Box

A reliable and safe packing assembly requires a homogeneous compression of the entire set of graphite packing. The screwed stuffing box transfers the compressive load to each packing in the stuffing box. This is similar to the hydro- static principle of pressure distribution in a fluid. To achieve a steady homogeneous compression of all packing, the lower rings must be compressed more than the upper ones during assembly. To realise this, the patented ARCA-OPTIPRESS pre-loading device, activated by the actuator, is recommended.

If the packing loading is simply done by tightening the screwed stuffing box there is a risk of an unequal compression of each packing. In such a case, the upper rings are compressed more than the lower ones due to frictional forces. This leads to an unfavourable non-homogeneous compression of each ring. Since only the top packing seals tightly, it comes to an early leakage in service and the torque demand also increases. As a consequence, the torque transferred from the screwed stuffing box must be applied with care, so that the packing sealing becomes effective, while the hysteresis does not become too high.

Bellows Seal Bonnet

Hermetically sealing bellows are available for process fluids when no stem leakage can be tolerated (eg toxic fluids). The pressure-proof and elastic stainless steel bellows is tightly seal-welded to the valve stem and the upper adapter ring. For safety reasons, the construction includes a standard stem sealing as back-up in case of a bellows failure. Between bellows and packing a tapped hole with a plug screw is optionally supplied, either to be used as leak detection, bleed-off, or for inserting a blocking gas.

The voluminous bellows housing provides a The voluminous bellows housing provides a reasonable flow velocity around the bellows and, therefore, reduces the susceptibility of the bellows against crystallising fluids or polymers. The design is equipped with a built-in twist protection that safely keeps the torque caused either by fluid forces or by improper handling away from the bellows, a guarantee against sudden bellows failure and the resulting shutdown and repair costs. Of course, the Forbes Marshall ARCA bellows sealing is in full compliance with IS015848.

Stem Sealing

Wear Resistant Bushing

To prevent galvanic corrosion between the bonnet stuffing box (carbon steel) and the packing (graphite), all bonnets of valves larger than DN 50 (NPS 2") offer a special treated stainless steel bushing. For valves equal or less than DN 50, the bonnet is always made of stainless steel.

The bushing with a straight through bore allows a super finish of the surface which ensures perfect sealing between packing or sealing ring and bushing. The stainless steel bushing avoids or minimises any corrosion and spoiling in the vicinity of the sealing.

Bonnet Extension for Cryogenic Service

The cross sectional drawing shows the principle design of the newly developed ECOTROL[®] control valve for cryogenic service. The valve plug and stem extension are double guided. The bottom guiding is located right below the valve seat. This guarantees a reliable sealing performance, a vibration free guiding of the plug, and an easy replacement of the guide bushing. Every part that is subject to wear can be individually replaced. The seat is axially restrained by the retaining cage and the top flange.

The bonnet extension prevents icing of the packing area. The thin walls of the insulation column and of the stem extension allow only a very low conductive heat flow. In addition, the stem extension pipe is filled with perlite to reduce convective heat loss to a minimum. The bonnet extension length is based on customer requirements.

All cryogenic valves, apart from Forbes Marshall ARCA's standard valves, are assembled in a clean-room environment. Here, the valves undergo a thorough cleaning process in a subsonic bath followed by a complete dehydration in an air circulating dryer.

PED Top Flange Design (8C1)

To be in compliance with the European Pressure Equipment Directive (PED) the valve's top flange and actuator yoke (material: austenitic stainless steel) are made of two individual parts. The top flange is permanently attached to the body and untying is unnecessary for dismounting the actuator.

Trim Styles

Parabolic Plug (Standard)

Metal-seated quick-changeable trim combination

Insensitive to impurities with low cavitation design

Fast and easy to produce due to its rotational symmetry

Parabolic Plug with Soft Sealing and Secondary Metal-to-metal Sealing

Soft-seated quick-changeable trim combination, the PTFE-soft sealing (for unrestricted use on both sides) is flexibly supported by an additional Elastomer O-Ring. The additional metal-to- metal sealing of plug and seat ring ensures that the PTFE of plug and seat ring ensures that the PTFE disc is not plastically deformed by excessive loads when the plug reaches its final closed position.

Parabolic Plug Double-guided

Metal-seated quick-changeable trim combination with top and bottom guiding.

This double guiding construction stabilizes stem and plug over the full travel range. Therefore, it is recommended for high pressure drop applications.

The additional guiding is located right below the seat ring and can be easily replaced.

Most conventional body designs with top and bottom guided trim have a bolted bottom flange which requires an extra body gasket plus the risk of additional external leakage.

The ECOTROL $^{\mbox{\tiny \odot}}$ one-piece body design eliminates this problem and ensures optimum tightness.

Perforated Plug / Perforated Low Noise Cage

Metal-seated quick-changeable trim combination, particularly effective for liquids and compressible fluids at high pressure drop ratios. Liquid flow can cause erosion by cavitation. The flow, directed through the holes of the trim, is divided into numerous jets of cavitating liquid.

In the centre of the cage, the jets impact and the vapour bubbles collapse. Here, they do not cause any damage to the valve internals and the noise level is also considerably reduced. For more noise abatement, a perforated low noise cage is available for all trim designs.

Balanced Trim

Valves with balanced trims require much lower control forces than valves without balancing. As sealing elements we offer:

Metallic piston rings Elastomer quadrings with PTFE support Pure graphite

Trim Design Trim Type L1 Trim Type P1 Ţ ĥø പ്പ M Trim Type L2 Trim Type L3 Ø μø od

Technical Data and Materials

Nominal size	1/2" -	16"			
Pressure rating	ANS	SI 150-1500			
Material of body	AST	M	for temperatures		
	A 21	16 WCB	-28°C to 427°C		
	A 35	51 CF8M	-196°C to 400°C		
	A 35	51 CF8	-196°C to 400°C		
	A 35	52 LCB	-50°C to 400°C		
	A 21	17 WC6	-28°C to 500°C		
	A 21	17 WC9	-28°C to 550°C		
Material of bonnet	≤ DN 50 bonnet material CF	8M (SS316) /	CF8 (SS304)		
	≥ DN 80 bonnet material is s	ame as body,	but with sealing bushing of SS316		
Characteristics of plug	Standard: Equal percentage	, linear and O	n / Off		
	Optional : Modified linear				
Rangeability	1) 8C - 1:50 2) 6N, 6H - 1:40)			
Double guiding	Optional : Integrated double	guiding availa	able 1½ - 16", Kvs > 40		
Seat leakage	Metal-to-Metal: Leakage Cla	ss IV (<0.01%	₀kvs); optional leakage rate class V		
	Leakage Class VI (0 - 180°C) (ANSI 150 and 300 only)				
Bellows sealing	SS316 weldless double laye	r or optional i	n Hastealloy C / Monel		
	Available for ANSI 150 and A	NSI 300, oth	er pressure classes on request		
Heating jacket	Connections 1/2" or 1" ANSI 3	300 socket sc	rewed or flanged and other on request		

Standard Trims

Material code no.	Parabolic plug	Parabolic plug P1 Integrated double guiding [*]	Perforated plug L1 / L2 / L3	Seat	Seat sealing type	Temperature of fluid
1	SS316	-	-	SS316	metal-to-metal	acc. to stem sealing
2	_	SS316	SS316 nitrided	SS316	metal-to-metal	acc. to stem sealing
3	-	-	SS440C nitrided	SS410	metal-to-metal	acc. to stem sealing
4	SS440C hardened	SS440C hardened	SS440C hardened	SS440C hardened	metal-to-metal	acc. to stem sealing
5	1.4922	1.4922 nitrided	1.4922 nitrided	1.4922	metal-to-metal	acc. to stem sealing
6	SS316	-	-	SS316	PTFE/EPDM	-50 ~140°C
7	SS316			SS316	PTFE	-196 ~180°C

* Only from \geq DN50 \geq kvs 40

Diaphragm Actuator (MF Series)

Description

This is a pneumatically operated multi-spring diaphragm actuator of the new generation. The actuator is easily field reversible without the need of disassembly. The instrument air supply between positioner and actuator is attained through bores inside the yoke providing more reliability in comparison to conventional designs. This method ensures a safe air supply to the actuator and enormously simplifies the positioner mounting. Furthermore, the combination with the positioner provides the option of a permanent ventilation of the spring case by clean exhaust instrument air.

During operation, there is a minimal overpressure against atmosphere on the rear of the diaphragm plate (spring chamber). This guarantees that during stroke movement no ambient air can be sucked into the spring chamber. This protects the essential inner parts against aggressive atmosphere (like sea air).

Materials					
Component	MOC				
Diaphragm housing	Press steel				
Diaphragm	Purbunan rubber				
Springs	Oil tempered high carbon stainless steel				
Spindle	Stainless steel				
Yoke	Cast iron				

Technical Information	
Temperature range	-20°C to 80°C
Max. operating pressure	6 bar
Linearity	< 3%
Hysterisis	Max. 3%
Air supply conn.	1/8" BSP for MFI 1/4" BSP for MFIII

. .

Thrust force (kN) – Air to Open

Size	Stroke	No. of	Diaphragm	Air Pressure Range Thrust Force			
	(mm)	springs	area (cm) ²	from(bar)	to(bar)	(kN)	
MEL 20		3		0.8	1.5	2.4	
IVIF1-20	20	6		1.5	3.0	4.8	
MFI-30	_	3	320	1.0	1.5	3.3	
(pre-loading)		6		2.0	3.0	6.5	
		3	-	0.8	1.5	2.4	
MFI-30		6		1.5	3.0	4.8	
	30	3		0.7	1.5	5.0	
		6		1.5	3.0	10.0	
MFIII-30		9		1.8	3.7	13.0	
		12		2.2	4.4	16.0	
		3		1.1	1.5	8.0	
MEUL60		6	720	2.2	3.0	16.0	
1011 111-00		9		2.7	3.6	19.0	
		12		3.1	4.3	23.0	
		3		0.7	1.5	5.0	
		6		1.4	3.0	10.0	
IVIF111-60	60	9		1.7	3.6	12.0	
		12		2.0	4.3	14.0	

Thrust force (kN) – Air to Close

Size	Stroke (mm)	No. of springs	Diaphragm area (cm) ²	Minimum Air pressure	d	Thrust Force (kN) depending on air pressure			
				(bar)	2.0 bar	3.0 bar	4.0 bar	5.0 bar	6.0 bar
MEL 20	20	3		1.5	1.6	4.8	8.0	11.2	14.4
IVIF1-20	20	6	320	3.0			3.2	6.4	9.6
		3		1.5	1.6	4.8	8.0	11.2	14.4
MFI-30		6		3.0			3.2	6.4	9.6
		3		1.5	3.6	10.8	18.0	25.2	32.4
30	6		3.0			7.2	14.4	21.6	
		9		3.7			2.2	9.4	16.6
IVIEIII-30		12		4.4				4.3	11.5
		3	720	1.5	3.6	10.8	18	25.2	32.4
	<u> </u>	6		3.0			7.2	14.4	21.6
IVIT III-60	00	9		3.6			2.9	10.1	17.3
		12		4.3				5.0	12.2

Universal Diaphragm Actuator - Series UI, UIII and UV

High actuating power at affordable cost

Forbes Marshall universal diaphragm actuator series U0, UI, UIII and UV features a pneumatic actuator designed for applications that demand high actuating power. Its optional reinforced spring with compact air chamber delivers up to 14000 lbf thrust force for extreme pressure control applications. These diaphragm actuators can be fitted with standard accessories like positioner, feed-back transmitter, limit switches and air-filter regulator. Optional hand wheel is provided for emergency operations.

Actuator Technical Information

Temperature range	-13°C to 90°C
Maximum operating pressure	6 bar (g)
Linearity	< 2%
Hysterisis	Max. 3%
Air supply connection	1⁄4" NPT*
*Others available on request	

Matoriale

Materials	
Diaphragm housing	Diecast Aluminium
Diaphragm	Purbunan Rubber
Springs	Stainless Chrome Steel
Spindle	Stainless Chrome Steel
Yoke	S G Iron

	H+HO	Н	D
U0-20	560	440	230
UI-20	630	495	270
UI-30	640	505	270
UIII-30	920	723	392
UIII-60	950	753	392
UV-60	1290	995	530
UV-100	1300	1005	530
UV-120	1315	1020	530

Features:

Field reversible - flexible control action

High thrust forces - usable inextreme pressure reductions

Low maintenance - less inventory

Cast aluminum housing - light weight and corrosion resistance

Thrust force (Kgs) - Air to Close

Air Supply Range Bar	Standard U0-20 0.2-1.0 Bar	Standard UI-20 UI-30 0.2-1.0 Bar	Standard UIII-30 UIII-60 0.2-1.0 Bar 0.2-1.0 Bar	Standard UV-60 UV-100 UV-120
2.8	370	560	1270	2540
3.0	410	620	1410	2820
3.5	515	776	1760	3525
4.0	620	930	2115	4230
4.5	725	1085	2470	4935
5.0	830	1240	2820	5640
5.5	935	1395	3170	6345
6.0	1040	1550	3525	7050

Thrust fo	orce (l	Kgs) -	Air to Op	ben						
Actuator	Sp	oring	Diaphragm	Diaphragm Air to Open			With Weight Without			
Model	Range	e (Barg)	Area	Spring to Close	Hand	wheel	Hand	wheel		
110.20 m	From	10	(39. 011)	40	Kgs	Lbs	Kgs	Lbs		
00-20.n	0.2	18	-	200						
U0-20.v	0.4	2	210	80	9.5	21	8	18		
	1.4	3		284						
UI-20.n	0.2	1		60						
UI-20.n	0.4	1.2		125						
UI-20.11	0.8	1.4	-	250						
UI-20.n	1	1.8	-	310						
UI-20 v	12	2 25	•	370	1					
UI-20.v	1.4	2.45		435						
UI-20.v	1.6	2.65	320	500	19	42	16.8	37		
UI-20.v	1.8	2.25		560						
UI-30.n	0.2	1	-	60						
<u>UI-30.n</u>	0.4	1.2	-	125						
UI-30.n	0.8	1.6	-	250						
UI-30.n	1	1.8		310						
UI-30.v	1.2	2.8		370]					
UI-30.v	1.4	3	-	435	1					
UIII-30.n	0.2	1		140						
UIII-30.n	0.4	1.2	-	280	1					
<u>UIII-30.n</u>	0.6	1.4		425						
UIII-30 n	1	1.0		705						
	10	0		045						
UIII-30.v	1.2	22	-	985						
UIII-30.v	1.6	2.4	-	1130						
UIII-30.v	1.8	2.6	720	1270	49	108	45	99		
UIII-30.V	2	2.8	-	1410						
011-30.0	2.2	5		1000						
UIII-60.n	0.2	1		280						
UIII-60.n	0.6	1.4		425						
UIII-60.n	0.8	1.6		565						
UIII-60.v	1	2.6		705						
UIII-60.v	1.2	2.8		845						
UIII-60.v	1.4	3		990						
UV-60.n	0.2	1		280						
UV-60.n	0.4	1.2	-	565						
UV-60.n	0.8	1.4	•	1130						
UV-60.n	1	1.8	1	1410	1					
UV-60.v	1.2	2.45	1	1690	1					
UV-60.v	1.4	2.65		1975						
UV-60.v	1.6	2.85	1440	2255	105.6	233	99.8	220		
UV-60.v	2.4	4.5		2800						
UV-60.v	2.9	4.55]	3000	1					
UV-100.n	0.2	1]	280]					
UV-100.n	0.4	1.2	1	565	1					
UV-100.n	0.6	1.4		845						
UV-100.v	0.8	2.8		1130						
UV-100.v	1	3		1410						
				For 10",12" and 14'	,					
UV-120.n	0.2	1		280						
UV-120.n	0.4	1.2		570						
UV-120.n	0.6	1.4	1440	845	105.6	233	99.8	220		
UV-120.v	1	3	•	1410	1					
		-		For 16"						
10/400	0.0	4.0		050						
UV-120.n	0.2	1.2	1440	<u>∠50</u> 650	105.6	233	99.8	220		
UV-120.v	0.6	3	0470	840		200	00.0	220		
			1	1						

Side mounted handwheel available on request.
Actuator weight remains same irrespective of spring range and actuator action.
Above spring ranges are applicable for parabolic trims. For perforated, pressure balanced and three way trims spring ranges will be selected on a case to case basis

Principle dimensions (in mm) for flanged bodies acc. to ANSI class 150/300 RF										
	D	N	1/2"	1"	1 1/2"	2"	2 1/2"	3"	4"	
	VBL Class 150	RF	178	184	222	254	276	298	352	
Valve	VBL Class 300	RF	190	197	235	267	292	317	368	
		Standard bonnet	11	14		105		156	181	
		Extended bonnet	17	70		167		248	267	
	VH	Bellow bonnet	22	28		233		365	389	
		Balanced std. bonnet	NA			NA		196	221	
		Balanced ext. bonnet	NA			NA			286	
	VU		48 62 78 83 83		106	136				
	ØA	MFI	270							
		MFIII						400		
Actuator	AH	MFI	346				404			
		MFIII						489		
	AHV	MFI			493			55	51	
	MFIII							65	51	
	В				130			15	50	
	Weight	MFI	20.5	23	31	33		70	93	
	approx. kg MFIII							96	119	

Note : weight = valve + actuator without handwheel

	I	DN	6"	8"	10"	12"	14"	16"	
	VBL Class 150	RF	451 543		673	737	889	1016	
	VBL Class 300	RF	473	568	708	775	927	1057	
Valve		Standard bonnet	260	292	357	394	462	518	
		Extended bonnet	355	407	506	543	611	667	
	VH	Bellow bonnet			on reque	est			
		Balanced std. bonnet	260 292		357	394	462	518	
		Balanced ext. bonnet	355	407	506	543	611	667	
	VU	3FL	189 239		305	335	395	443	
		MFIII	40	0					
Actuator	ØA	UV	530						
		MFIII	625						
	AH	UV	100	06	1135				
	AHV	MFIII	888						
	UV		1323		1452				
	В		20	0		34	40		
	Weight	MFIII	190	250					
	approx. kg	UV	UV 225 285		355	655	745	1395	
	I	1]		1	1	1	1		

Note : weight = valve + actuator without handwheel

Dimensions and Weights

Globe Valve Series 6H with Pneumatic Actuator (MF Series)

Principle di	Principle dimensions (in mm) for flanged bodies acc. to ANSI class 600/900/1500 RF								
	DN	N	1"	1 1/2"	2"	3"	4"	6"	8"
	VBL Class 600	RF	216	241	292	356	432	559	660
	VBL Class 900	RF	254	305	368	381	457	610	737
	VBL Class1500	RF	254	305	368	470	576	705	832
Value		Standard bonnet	132	159	178	220	255	342	357
valve		Extended bonnet	167	239	243	300	332	402	447
	VH	Bellow bonnet	on request						
		Balanced std. bonnet				220	255	342	357
		Balanced ext. bonnet				330	332	402	447
		3FL	68	103	113	153	178	228	260
	VU	4FL			174	219	254	314	366
		MFI	270						
	ØA	MFIII					400		
		UV						5	30
		MFI	361						
		MFIII				489		6	25
Actuator	AH	UV						10	006
		MFI	50)8					
	AHV	MFIII				657		8	88
		UV						13	323
	В		13	30	70	150	100	2	00
		MEI	34	42	/2	101	136	0.17	007
	Weight	MEIII			98	127	162	317	607
	approx. kg	UV						335	645

 $\ensuremath{\textbf{Note}}$: weight RTJ flanged and weld end connection available on request

Applicable Standards

Standards		
ASME / ANSI	B16.5	Flange dimensions for CI. 150, 300, 600, 900 and 1500 flanges (RF, RTJ)
ASME / ANSI	B16.25	Valves - buttwelding ends
ASME / ANSI	B16.34	Valves - flanged, threaded and welding ends
ASME / ANSI	FCI 70.2	Control valve - Seat leakage
ISA / ANSI	75.01	Control valve sizing

Testing

Unmachined material	NDT in accordance with applicable technique following of the order specification	ASME B 16.34
Finished component	Visual testing Hydrostatic test of all pressure containing parts(1, 5 x PN)	ASME B 16.34
ASME	Valves - Seat leakage	ASME B 6.104

Standard Kv Values

Γ

3C (1/2"- 4"#	150 /	#300)		8C (1/2"-	4" #	150/#3	00) Peri	orated L1, L2,	L3	
Valve size	Lift	ft Seat Maximum Kv values Valve Lift Seat Availa				ble Kv values	Max availab	le Kv value		
		3		SIZE		uia				
		1	0.00	1/2", 1"	20	20		1.25	4.1	2.6
		4	0.1					2.5		
			0.10	1" 1 1/2"	20	25	-	4	61	32
4 /0" 4"	10	F	0.25					6.3		0.2
1/2,1	16	5	0.4	1 1/2" 2"	20	36		10	10.6	51
		0	0.63	1 1/2 , 2				16	10.0	5.4
		8	1			46		25	12.2	6.4
		10	1.6	2"	20	50		40	NA	NA
		12	2.5	2 1/2"	20	36	16	16	NA	NA
		15	4	2 /2	20	46	25	25		
1", 1 1/2"	16	20	6.3			40	20	23		
1", 1 1/2", 2"	16	25	10			50	40	NA	NA	NA
1 1/2", 2"	16	30	16	3"	30	50	40	25	23.5	12.1
		36	25				40	25		
2"	16	46	40	3", 4"	30	80	63	40	35.3	18.2
2 1/2"	16	36	25				100	55	-	
		46	40				63	40		
		50	63	4"	30	100	100	55	47.1	24.2
3"	30	46	40				120	63	-	
3", 4"		50	63							
	30	80	100							
4"	30	100	160							
Seat dia for	Pr. B	al. valv	ve (8C)	Seat dia	a for l	Pr. Bal	. (8C)			
3"#150/300	- 80	mm		3"#150/300 – 80mm						
4"#150/300 – 100mm				4"#150/	300 -	– 100n	nm			

Standard Kv Values

6N (6"-16"#150/#300) Parabolic

6N (6"-16"#150/#300) Perforated L1, L2, L3

Lift Seat dia		Maximum Kv values			
LIIL	Seatula	Linear and Equal percentage			
60	90	150			
60	113	260			
	143	380			
60	172	650			
100	143	380			
	172	650			
100	220	900			
100	220	900			
100	282	1300			
100	313	1800			
	282	1300			
120	313	1800			
	400	2500			
	Lint 60 60 100 100 100 100 100 120	Lift Seat dia 60 90 60 113 143 60 172 100 143 172 220 100 220 100 220 100 282 100 313 100 313 282 100 313			

Ocal ala 101 1 1. Dal. (014)	
6"#150/300 – 143mm	12"#150/300 – 282mm
8"#150/300 – 172mm	14"#150/300 – 313mm
10"#150/300 – 220mm	16"#150/300 – 400mm

6H (1"-12"#600/#900/#1500) Parabolic

Valve Size	Lift	Seat dia	Maximum Kv values
			Linear and Equal percentage
			0.04
		3	0.06
			0.1
			0.16
		4	0.25
		5	0.4
1"	20	6	0.63
		7	1
		8.5	1.6
		11	2.5
		16	4
		19	7
		24	11
	20	24	11
1 1/2"		32	18
		37	26
	30	32	18
2"		37	26
		48	43
3"	30	48	43
		62	68
3", 4"	30	73	100
4"	30	90	150
6"	60	90	150
		113	260
6", 8"	60	143	380
8"	60	172	650
* Please cont	act foi	Kv values (of 10" and 12".
Seat dia for	Pr. B	al. (6H)	
3"#600/900	/1500	- 73mm	

4"#600/900/1500 – 90mm 6"#600/900/1500 – 143mm 8"#600/900/1500 – 172mm

) /ah (a	1:0	Cast	Available k	<pre>Kv values</pre>		Max available	e Kv values
Size	LIII	Dia	Linear (L1)	Equal percentaç	ge (L1)	Linear (l2)	Linear (I3)
6"	60	90	170	125		103	53
		113	260	150		132	67
6", 8"	60		170	125			
		143	260	150		171	88
			380	210			
			260	150			
8"	60	172	380	210		209	107
			450	260			
10"	100	143	380	320		270	140
		172	650	380		395	203
			380	320			
10", 12"	100	220	650	380		476	245
			900	520			
14"	100	220	900	520		476	245
	100		650	380			353
12", 14"		282	900	520		687	
			1300	720			
			900	520			
14"	100	313	1300	720		*	*
			1800	850			
		282	1400	750		*	*
		313	1800	900		*	*
16"	120		1400	750			
		400	1800	900		1180	507
			2500	1250			
Seat dia	for I	Pr Ba	L (6N)				
6"#150/	- 143r	nm	12"	#150	/300 – 282mr	n	

6H (1"-12"#600/#900/#1500) Perforated L1, L2, L3

8"#150/300 – 172mm 10"#150/300 – 220mm

			Max av	ailable Kv values	Max availa	ble Kv values	
Valve Size	Lift	Seat dia	Linear (L1)	Equal percentage (L1)	Linear (I2)	Linear (I3)	
		19		4	4.1	2.6	
1"	20	24		7			
		24	10	-	6.1	3.2	
4 4 401			18	11			
1 1/2″	20	37	27	16	10.6	5.4	
0"	00	37	26	21	17.9	9.7	
2	30	48	43	35	23.5	12.1	
3"	30	48	55	38	23.5	12.1	
	30		62	60	43	30.6	15.7
3", 4"		73	80	55	35.3	18.2	
4"	30	90	110	68	47.1	24.2	
6"	60	90	170	125	103	53	
		113	260	150	132	67	
6", 8"	60	143	380	210	171	88	
8"	60	172	450	260	209	107	
Please contact for Kv values of 10" and 12".							

14"#150/300 – 313mm 16"#150/300 – 400mm

Seat dia for Pr. Bal. (6H)
3"#600/900/1500 – 73mm

4"#600/900/1500 – 90mm	
6"#600/900/1500 – 143mm	

ECOTROL® Codification Guide

Example

· ·		
8C	3	L1
Low pressure DN 15-100 / PN 10-40, ASME 1/2"- 4" class 150 and 300	Extended Bonnet	Perforated plug, 1 stage pressure reduction

	Valve Series and Size / Pressure Class
8C	Low pressure DN 15-100 / PN 10-40, ASME 1/2"- 4" class 150 and 300
6N	Low pressure DN 150-400 / PN 16-40, ASME 6"-16" class 150 and 300
6H	High pressure DN 25 to 300 / PN 63-160, ASME 1" – 12" class 600, 900 and 1500
1	Standard bonnet.
3	Extended bonnet.
4	Bellow sealed.
7	Standard bonnet with pressure balancing.
8	Extended bonnet with pressure balancing.

	Trim Design
P1	Parabolic plug, 1 stage pressure reduction
P3	Parabolic plug, 3 stage pressure reduction
L1	Perforated plug, 1 stage pressure reduction
L2	Perforated plug, 2 stage pressure reduction
L3	Perforated plug, 3 stage pressure reduction
S	On/off plug

Ordering information

Type of fluid and its properties (density, viscosity, specific heat ratio, compressibility factor, etc.)

Fluid flow rate, inlet pressure and temperature (min/nor/max)

Fluid outlet pressure / pressure drop in case of pressure control

Line size

Material of construction

Accessories and their make (if any specific)

Actuator air failure action

Valves with Various Actuations

Forbes Marshall Krohne Marshall Forbes Marshall Arca Codel International Forbes Vyncke Forbes Marshall Steam Systems **Forbes Marshall Pvt. Ltd.** Opp 106th Milestone, CTS No. 2220, Mumbai-Pune Road, Kasarwadi, Pune- 411034 INDIA Tel: +91(0)20-68138555 Fax: +91(0)20-68138402

CIN No.: U28996PN1985PTC037806

Email : vmktg@forbesmarshall.com, ccmidc@forbesmarshall.com

www.forbesmarshall.com

© All rights reserved. Any reproduction or distribution in part or as a whole without written permission of Forbes Marshall Pvt Ltd, its associate companies or its subsidiaries ("FM Group") is prohibited.

Information, designs or specifications in this document are subject to change without notice. Responsibility for suitability, selection, installation, use, operation or maintenance of the product(s) rests solely with the purchaser and/or user. The contents of this document are presented for informational purposes only. FM Group disclaims liabilities or losses that may be incurred as a consequence of the use of this information.