

User Manual – Dual Fuel

Energy Conservation I Environment I Process Efficiency

effiMAX

Cloud Based effiMAX

User's Manual

This user manual corresponds to Cloud Based effiMAX product which is meant for monitoring & maintaining the peak Efficiency of the Boiler.

If you experience difficulty with the installation or operation of this system, please contact our Customer service representative.

Developed and Marketed by:

Forbes Marshall Pvt. Ltd.

V1.0

EffiMAX for Dual Fuel Fired Boilers

Table of Contents

	e of Contents ty Information	1 4
1	Introduction	5
1.1	Cloud Based EffiMAX Concept	5
1.2	Features	12
1.3	Specifications	16
1.4	Product Dimension Details	20
2	Installation	21
2.1	Unpacking and Inspection	21
2.2	Packing List	21
2.3	Tools required for installation	22
2.4	Location and Mounting	22
2.5	Installing the Sub-Systems	23
2.6	Cable and Wiring of Sub-System and Analyzer	35
2.7	Connection Details	38
2.8	Commissioning the Product	45
3	Eversense installation	47
4	Operating EffiMAX	49
4.1	Operating the System from Plant Level	49
4.2	Operational Guidelines	57
5	Blowdown System	82
5.1	Introduction	82
5.2	Operating Principle	82
5.3	Assembly of the System	85
5.4	Commissioning the System	89
5.5	Troubleshooting	91
6	Temperature Transmitter	92
6.1	Introduction	92
7	Maintenance Schedule	93
7.1	TDS system	93
7.2	Oxypro	94
7.3	Temperature Transmitter	94
bes	Marshall	Page

Та	ble o	f Contents	
	8	Spares List	96
	9	Do's And Don'ts	97
	10	Log Report	98
	11	Installation Drawings	100

Table of Contents

EffiMAX

List of Figures

Fig No.	Description
Fig. 1	EffiMax Monitoring System
Fig. 2	EffiMax Control System
Fig. 3	System Architecture
Fig. 4	Product Dimension Details
Fig. 5	Oil Flow Meter Loop diagram
Fig. 6	Hardware Architecture
Fig. 7	Typical Operation 1
Fig. 8	Typical Operation 2
Fig. 9	BBCS Assembly details
Fig. 10	Steam Flow Meter Installation diagram
Fig. 11	Steam Temp. Transmitter Installation diagram
Fig. 12	Feed water Temp. Transmitter Installation diagram
Fig. 13	Stack Temp. Transmitter Installation diagram
Fig. 14	Stack Oxygen Sensor Installation diagram
Fig. 15	TDS Sensor Installation diagram
Fig. 16	Steam Pressure Transmitter Installation diagram

Safety Information

Safety Information

To ensure that your product is safe and without risk to health, the following points must be noted:

1. The relevant sections of these instructions must be read before proceeding.

2. The **Forbes Marshall effiMAX System** should be installed and operated only in manner specified in this User Manual.

3. Installation, Operation, Maintenance and Servicing must only be carried out by suitable trained personnel and in accordance with the information given. Any deviation from these instructions will transfer the complete liability to the user.

4. To prevent the system from Electrical noise / transients on Earth Line, please connect separate Instrument Earth to the Earth terminal screw provided on the Panel / Enclosure.

5. Warning labels on containers and packages must be observed.

6. Safety precautions must be taken to avoid the possibility of an accident occurring when operating in conditions of high temperature.

7. Before making any wiring changes, please make sure the Power supply to the unit is turned off.

8. The Oxygen probe is operated at the temperature level of **800°C**. Please DO NOT touch the oxygen probe surface when in operation.

9. For seamless operation of the product, It is recommended to have UPS supply to the system.

Page 4

SECTION 1: INTRODUCTION

1.1 Cloud Based effiMAX Concept

Cloud Based effiMAX, the latest offering from the effiMAX range of online boiler efficiency analyzers, provides the complete solution for monitoring, maintaining your boiler to the optimum efficiency and controlling FD fan and Drum level. This sophisticated yet simple to use analyzer operates on-line and continuously monitors your boiler at every instant of its operation.

effiMAX (Dual Fuel) calculates the efficiency of the Dual Fuel fired boiler in general accordance with the BS-845 standard based on indirect / direct efficiency computation depending on the variant and computes individually the total amount of losses in your boiler. These losses include Stack loss, Enthalpy loss, Radiation loss and Blowdown loss. The data generated by the system can then be used to fine-tune the system to generate more steam with lesser quantities of fuel.

As per the variant, the on-line parameter screen displays : Oxygen in the stack, Stack temperature, Steam flow (density compensated), fuel flow, Steam temperature, Feed-water temperature, Ambient temperature and TDS of boiler water, which forms the basis of calculating the efficiency and help you to check the operating conditions of your boiler & maintain the boiler at peak efficiency.

ffiMax					
MIMIC	FLEXI I T	RENDS I AL	ARMS I SET	TINGS	
		MIMIC 1	MIMIC 2		
Steam Flow	Steam Temp	Steam Press	Efficiency	Stack Loss	Enthalpy Loss
$4000_{\text{kg/h}}$	180.0 _{°C}	9.0 _{bar(g)}	81.87 %	4.32 %	12.81 %
Steam Total	S:F Ratio	Ambient Temp	Radiation Loss	Unburnt Loss	Blowdown Los
1605 _{kg}	20.00	34.0 ∘ _C	0.25%	0.50%	0.25%
Feedwater Temp	Drum TDS	4		Stack Temp	Stack O₂
56.0 ∘c	3000_{ppm}	BOILER C	* -	152.0 ∘c	4.10 %
Blowdown Total				Fuel Flow	Fuel Total
¹⁷ kg				80kg/h	31 _{kg}

Fig. 1- effiMAX Monitoring System

The effiMAX now comes with the user friendly 10" touch screen display. The first screen displays the graphical representation of the boiler and all online parameter values. The Touch screen Interface of *effiMAX* presents data like the input parameters and the losses on user friendly screens with real-time and historical trends. Boiler performance can be improved from the continuous monitoring of all the parameters.

The navigation to different screens like Trends, Alarms, Settings, etc. can be easily done by touching the specific buttons on the display.

This display also provides pop up keypad for easy data entry and settings, eliminating the use of any fixed keys.

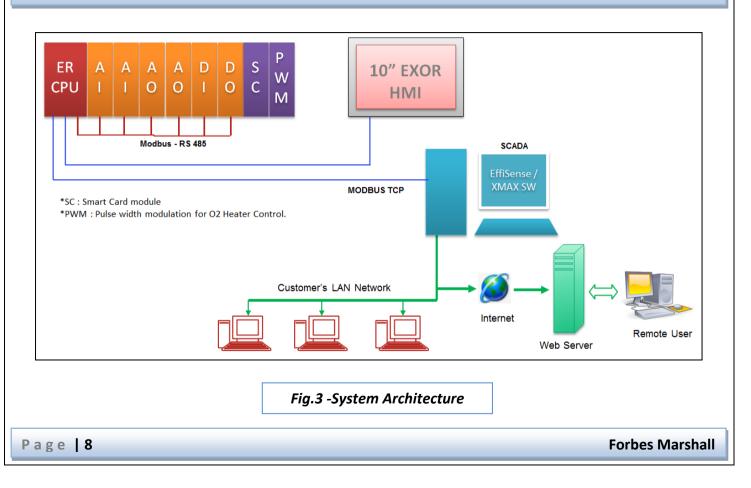


Fig. 2- effiMAX Control System

The Touch screen Interface of *effiMAX* presents control loop data on user friendly screens with historical trends. Boiler performance can be improved from the continuous monitoring of all the parameters. All control loops live status helps in monitoring complete boiler control performance on single page and easy to fine tune.

Historical trends for can be viewed simply by touching the Trend icon button provided on respective control tile.

Introduction

The *EffiMAX* system is made up of the following components:

1. Panel unit :

The Panel unit of *EffiMax* displays online data of all the input parameters and the losses on user friendly 10" touch screen with realtime and historical trends. This unit is connected to all the field mounted sensors of the system and acquires on-line data. The values transmitted by the field sensors are converted to a standard format & then and given to the HMI which displays them on its relevant screens. These values are then used to compute the efficiency of the boiler.

2. Effisense Unit :

EffiSense is a data logging & remote monitoring software system. It receives data from EffiMax Panel unit. It logs the required data and generates graphical and text reports for the boiler operator and the management, to analyze boiler performance at a glance. The data from Effisense can be viewed remotely either in the Local network or over the Internet through a Global Static IP.

3. Oxygen Measurement Probe :

The oxygen measurement probe is mounted on the stack of the boiler and it measures the % O_2 in the flue gas. This is an important parameter for efficiency calculations. The % O_2 in the flue gas indicates the operating excess air level of the boiler and hence the health of combustion.

4. Stack temperature transmitter:

The stack temperature transmitter is mounted on the stack and is used to measure the flue gas temperature. This is used for calculation of combustion losses in the boiler along with oxygen content of the flue gas, ambient temperature, calorific & stoichiometric values of the fuel used.

Introduction

5. Steam flow meter:

The Vortex Steam flow meter is mounted on the main header line of steam and is used to measure the volumetric flow-rate. The volumetric flow-rate is converted into mass flow-rate in the Display unit. Steam flow of a boiler is the most important parameter to be monitored, as it indicates the total useful output from a boiler.

If instead of Vortex, Orifice flow meter is used for steam flow measurement then differential pressure, steam pressure and steam temperature will be used to calculate mass flow-rate in the Display unit.

6. Steam temperature transmitter:

The steam temperature transmitter used for measuring temperature of the steam is mounted just after the steam flow meter on the main boiler header. The steam temperature is used for on-line density compensation of the volumetric flow measured by the steam flow meter.

7. Steam Pressure transmitter:

The steam pressure transmitter used for measuring pressure of the steam is mounted on the steam line with syphon as close to the steam drum as possible. This may be used for on-line density compensation for the volumetric flow measured by the steam flow meter.

8. Blowdown TDS Sensor and Valve:

The blowdown sensor and the blowdown valve are mounted on the piping of the blowdown line. The sensor measures the Total Dissolved Solids (TDS) of the boiler drum water intermittently when the blowdown valve is opened. The EffiMAX unit then compares this value with the user fed set point and controls the TDS level.

If standalone TDS sensor is installed, then the sensor will measure the Total Dissolved solids in the Boiler water & will display it on the screen.

9. Feed-water temperature transmitter:

The feed-water temperature transmitter is mounted on the feedwater line and measures the feed-water temperature. This value is used for calculating Direct Efficiency of the Boiler.

10. Ambient Temperature Transmitter:

This transmitter is mounted near the EffiMAX unit and it measures the ambient air temperature. This value is used for the Stack and Enthalpy loss calculation.

11. Oil Flow Meter:

The Oil flow meter is a positive displacement meter which displaces a fixed amount of oil after each rotation of the internal gears. A magnetic sensor (Reed switch) is used to pick up the rotations of internal gears caused due to oil flow and these picked up pulses are fed to Frequency to current converter to generate 4-20 mA output signal from the meter.

12. Gas Flow Meter:

The gas flow meter is mounted on the boiler inlet line of gas and is used to measure the total gas consumption of boiler. Gas flow to a boiler is one of the important parameter to be monitored, as it indicates the total fuel input to a boiler.

12. R to I converter:

Resistance to Current converter is used to convert resistance output of Servomotor to current. Servomotor regulates the fuel and/or air delivery mechanism of burner. As per RPM of the motor, resistance output is generated and then converted to 4-20 mA by R to I converter. Thus, it measures the fuel firing rate in the boiler.

Introduction

1.2 Features of EffiMAX

Measured Parameters:

	EffiMAX 1000	EffiMAX 2000	EffiMAX 3000	EffiMAX 4000
Steam Flow (kg/h)	V	٧	V	V
Fuel Flow (kg/hr)	V	-	V	V
Stack Oxygen (%)	-	٧	V	V
Steam Temperature (°C)	V	٧	V	V
Stack Temperature (^o C)	-	٧	V	V
Steam Pressure (kg/cm2(g))	V	٧	V	V
Feedwater Temperature (°C)	v	V	٧	V
Ambient Temperature (°C)	-	V	٧	V
Drum TDS (ppm)	Optional	٧	V	V
Firing FB (%)	-	-	-	V
Drum Level (%)	-	٧	V	V
FD O/P (%)	-	-	-	V
Drum Level O/P (%)	-	-	-	V

Calculated Parameters:

	EffiMAX 1000	EffiMAX 2000	EffiMAX 3000	EffiMAX 4000
Boiler Efficiency (Direct) (%)	V	-	v	V
Boiler Efficiency (Indirect) (%)	-	٧	٧	٧
Stack Loss (%)	-	٧	V	٧
Enthalpy Loss (%)	-	٧	V	V
Blowdown Loss (%)	-	V	v	v
Radiation Loss (%)	-	٧	V	٧
Unburnt Loss(%)	-	٧	V	V

Page | 12

Steam to Fuel Ratio (Direct)	٧	-	٧	٧
Steam to Fuel Ratio (Indirect)	-	V	-	-
Steam Totalization (kg)	٧	V	٧	٧
Fuel Totalization (kg)	٧	-	٧	٧
Blowdown Totalization (kg)	٧	V	V	٧
Boiler On-Off Totalization	V	V	V	V
Boiler Blowdown control	٧	V	V	V

effiMAX for Superheated boilers:

effiMAX can be used to display Superheated Steam Temperature and Pressure. Due to high temperature and pressure, instead of HTCS sensor and corresponding assembly, medium pressure BBCS is used for TDS measurement. Here, water sample is taken and cooled to ambient temperature to measure the TDS. Then corresponding 4-20mA output is given to effiMAX which displays the TDS on continuous basis. If the TDS is higher than the set point mentioned in the BBCS, blowdown control valve is opened which sends a digital signal to EffiMAX to display the total blowdown occurred.

effiMAX for Orifice meters used to measure Steam flow:

On site, if orifice meters are present to measure steam flow, it can be connected to effiMAX. Along with Steam Pressure and Temperature readings and orifice plate related parameters, effiMAX displays the steam parameters. Following parameters are to be entered on Boiler Data page of effiMAX for steam flow calculation:

GA Gain input A1, GB Gain input A2, GC Gain input A3, GO Gain Output C, BA Bias input A1, BB Bias input A2, BC Bias input A3, BO Bias Output C, Max. Delta P, Max. Steam Pressure, Max. Steam Temperature.

Introduction

Flexi Parameters:

In addition to the standard effiMAX parameters, if more parameters are to be displayed like Water flow total, Furnace Pressure etc., the facility is available in effiMAX. Standard Analog input (4-20mA) signal is required for the same. Maximum 12 nos of flexi inputs can be configured but according to the variant's number of AI cards need to be installed in panel.

Configuration of these parameters is done from Product Page in the Settings tab. The parameter name and unit are to be assigned. Depending on the averaging or totalization requirement, select 'Avg.' or 'Total' option.

	IC I	FLEXI	1	TREN	IDS	I A	LARMS	1	SETTIN	GS			PERBE MARSHA
O₂ Cá	al	PID		Boiler D	Data	Fue	l Type	B	lowdown		Limits		Range
Syster	m			Produ	ct	Alarn	n Limits						
	Analog Input	Flexi Parameter		Average / Total	Unit	Enable	Analog Input	Flex	i Parameter		Average / Total	Unit	Enable
		Steam Flow 1		TTL 💌	kg/h	 Image: A start of the start of							
		Steam Total 1 SPM		AVG 💌	kg mg/Nm3								
	A/I 3	Feedwater Hard	ness	AVG 💌	ppm								
		Feedwater Flow		TTL 🔳	kg/h								
		Feedwater Total			kg								
												31/1	12/2019 - 12:25:
					©со	opyright For	bes Marshall P	vt Ltd	Se	lecte	d Fuel: Gas	5	E4KDual Fue
					©Co	opyright For	bes Marshall P	vt Ltd	Se	lecte	d Fuel: Gas	5	
					©Co	opyright For	bes Marshall P	vt Ltd	Se	lecte	d Fuel: Gas	5	
					©Co	opyright For	bes Marshall P	vt Ltd	Se	lecte	d Fuel: Gas		
					©co	opyright For	bes Marshall P	vt Ltd	Se	lecter	d Fuel: Gas	5	
					©co	opyright For	bes Marshall P	vt Ltd	Se	lecte	d Fuel: Gas	5	
					©ca	opyright For	bes Marshall P	vt Ltd	Se	lecte	d Fuel: Gas	3	
					©co	ppyright For	bes Marshall P	vt Ltd	Se	lecter	d Euel: Gas	5	
					©co	opyright For	bes Marshall P	vt Ltd	Se	ecter	d Fuel: Gas	5	
					© co	opyright For	bes Marshall P	vt Ltd	Se	lecter	d Fuel: Gar		
)					© ca	ppyright For	bes Marshall P	vt Ltd	Se	lecte	l Fuel: Gas	5	

Range of the parameters is to be entered from Range Page -> Flexi (Under drop down).

O2 CAI PID Boiler Data Fuel Type Blowdown Limits Range System Image Product Alarm Limits Image Flexi Flexi <td< th=""><th>MIMIC I</th><th>FLEXI</th><th>I TR</th><th>ENDS</th><th>I ALARI</th><th>MS I</th><th>SETTINGS</th><th></th><th></th><th></th></td<>	MIMIC I	FLEXI	I TR	ENDS	I ALARI	MS I	SETTINGS			
Flexi Parameter Min. Count Max. Count Min. Range Max. Range Actual Count Actual Value Steam Flow 1 10486 52428 2000 10000 0 2000 kg/h SPM 10486 52428 30 999 0 30 mg/Nm3 Feedwater Hardness 10486 52428 150 6000 0 150 ppm	O ₂ Cal	PID	Boil	er Data	Fuel Type	В	lowdown	Limits	Ran	ge
Flexi Parameter Count Count Range Range Count Value Steam Flow 1 10486 52428 2000 10000 0 2000 kg/h SPM 10486 52428 30 999 0 30 mg/Nm3 Feedwater Hardness 10486 52428 150 6000 0 150 ppm	System		Pr	oduct	Alarm Limi	ts			Flexi	
SPM 10486 52428 30 999 0 30 mg/Nm3 Feedwater Hardness 10486 52428 150 6000 0 150 ppm	Flexi Parameter									
Feedwater Hardness 10486 52428 150 6000 0 150 ppm	Steam Flow 1	1048	5242	8 2000	10000	0	2000 kg/h			
	SPM	1048	6 5242	8 30	999	0	30 mg/Nm3			
Feedwater Flow 10486 52428 2200 15000 0 2200 kg/h	Feedwater Hard	ness 1048	5242	8 150	6000	0	150 ppm			
	Feedwater Flow	1048	6 5242	8 2200	15000	0	2200 kg/h			
									31/12/2019 -	12:2

Thus, these flexi parameters are displayed on Flexi page.

MIMIC I	FLEXI	$\left\ I \right\ _{\mathcal{T}}$	TRENDS	1	ALAF	RMS I	SETT	INGS				С
Flexi Paramete	r	Value	Unit	Total Reset		Flexi Param	ieter		Value	Unit	Total Reset	
Steam Flow 1			.0 kg/h			SPM			30.0	mg/Nm3		
Steam Total 1 Feedwater Har	dness		3 kg 0 ppm			Feedwater	Flow		2200.0	kg/h		
						Feedwater	Total		1012			
										21/12	/2019 - 12	.02
				Copyright						31/12	/2019-12	02.

Introduction

1.3 Specifications

ANALYZER UNIT SPECIFICATIONS

EffiMAX Panel unit :	
Mechanical enclosure:	Wall-mount / Floor Mount unit
Electrical supply:	230V AC, 3A, 50Hz, UPS Supply
Power Consumption:	
Operating Temp:	0 – 50 ° C
Parameter Ranges :	
Efficiency Indication:	0 - 100 %
Stack Loss:	0 - 100 %
Radiation Loss:	0 - 100 %
Enthalpy loss:	0 - 100 %
Blowdown loss:	0 - 100 %
Blowdown Totalization:	0 - 1000000000 kg
Ambient air temperature Indication:	0 - 100 °C
Feed-water temperature Indication:	0 - 200 ^o C
Steam temperature Indication:	0 - 300 ^o C
Stack temperature Indication:	0 - 400 ^o C
Oxygen Indication:	0.0 - 20.9%
ID Output	0-100%
FD Output	0-100%
Feeder Output	0-100%
Drum Level Control Output (Optional)	0-100%
Steam flow indication:	As per the programmed range (kg/h)
Steam flow Totalization:	0 - 100000000 kg
Fuel flow Totalization:	0 - 1000000000 kg
S:F ratio:	0 - 20
TDS Set Point range:	0 - 6000 ppm.

Page | 16

SUB SYSTEM SPECIFICATIONS

TDS Measurement

Sensor:	HTCS Sensor			
Sensor chamber:	ASTM A-182 F304 body			
Max boiler pressure:	31 bar g			

BBCS (Boiler Blowdown Control System)

Air pressure required:	3 to 6 bar g			
Blowdown valve:	SS ball valve with pneumatic actuator and solenoid in the air line			
Solenoid voltage:	230 V AC, 50 Hz			

Steam Flow Meter

Measuring error:	$\pm 1.0\%$ of measured value (Re ≥ 20000) $\pm 2.0\%$ of measured value (10000 < Re < 20000) Pressure and temperature compensation: $\pm 1.5\%$ of measured value (Re ≥ 20000);
	±2.5% of measured value (10000 < Re < 20000)
Repeatability:	+/- 0.1% of measured value

Stack Temperature Transmitter

Temperature Sensor:	2-wire loop powered, integral head mounted transmitters
Range:	0 to 400 °C
Accuracy:	1 % of measured value
Process connection:	$\frac{1}{2}$ " BSP (male), Length – 18" below the head

Steam Temperature Transmitter

Temperature Sensor:	2-wire loop powered, integral head mounted transmitters
Range:	0 to 300 °C

Forbes Marshall

Page | 17

Introduction

Accuracy:	1% of measured value
Process connection:	$\frac{1}{2}$ " BSP (male), Length – 12" below the head

Feed-Water Temperature Transmitter

Temperature Sensor:	2-wire loop powered, integral head mounted transmitters			
Range:	0 to 200 °C			
Accuracy:	1% of measured value			
Process connection:	1/2" BSP (male), Length – 6" below the head			

Ambient Air Temperature Transmitter

Temperature Sensor:	2-wire loop powered, integral head mounted transmitters			
Range:	0 to 100 °C			
Accuracy:	1% of measured value			
Process connection:	$\frac{1}{2}$ " BSP (male), Length – 6" below the head			

Oil Flow Meter :

Port size:	½" BSP (Female)			
Range:	7-800 l/h			
Operating Temperature:	D-120 °C			
Accuracy:	+/-0.5 %			
Operating Pressure Max:	1.18 MPa			
LCD Display:	7 Segment 8 digit			

Gas Flow Meter

Measuring error:	$\pm 1.0\%$ of measured value (Re ≥ 20000) $\pm 2.0\%$ of measured value (10000 < Re < 20000) Pressure and temperature compensation: $\pm 1.5\%$ of measured value (Re ≥ 20000); $\pm 2.5\%$ of measured value (10000 < Re < 20000)	
Repeatability:	+/- 0.1% of measured value	

R to I converter for measurement of firing rate:

Power Supply:	230V AC, 50 Hz Supply	
Type of converter (Based on I/P signal from Drive) :	0 to 150 Ω	
Output signal:	4-20 mA	

SECTION 2: INSTALLATION

2.1 Unpacking and Inspection

 Inspect the shipping carton for any damages. If there are no visual damages open the carton.

 Check all the items as per packing list. If any of the items are missing, please inform the same to
 Forbes Marshall local representative.

If it is damaged then, inform the damage to the transporter for further action. It is recommended to take photograph in case of any insurance claims.

2.2 Packing List

	Qty.	EffiMAX 1000	EffiMAX 2000	EffiMAX 3000	EffiMAX 4000
1. Panel Unit	1 No.	٧	٧	٧	V
2. EffiSense Monitoring Unit	1 No.	٧	v	٧	v
3. Temperature Transmitter (0-100 °C)	1 No.	-	٧	v	v
4. Temperature Transmitter (0-200 °C)	1 No.	٧	٧	٧	v
5. Temperature Transmitter (0-300 °C)	1 No.	٧	V	٧	٧

Forbes Marshall

Page | 21

Installation

6. Temperature Transmitter (0-400 °C)	1 No.	-	V	٧	٧
7. O2 Sensor Probe	1 No.	-	٧	٧	٧
8. Oil Flow Meter	1 No.	V	-	٧	٧
9. Gas Flow Meter	1 No.	V	-	٧	V
10. Steam Flow Meter	1 No.	V	٧	٧	V
11. BBCS Sensor (TDS)	1 No.	V	٧	٧	٧

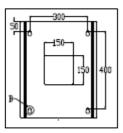
2.3 Tools required for installation

1. 1/4-inch flathead screwdriver (for the Analyzer unit).

2. 1/8-inch flathead screwdriver (for the Analyzer unit).

3. ½-inch BSW box spanner with torque wrench (for installation).

4. Size 8 and 10 adjustable spanner wrench (for steam flow meter, temperature transmitters and the Blowdown system).


2.4 Location and Mounting

For best results install the unit in area where temperature is ambient & vibrations are less.
Install the panel, such that on left or right side there is place for cable entry.

✤Fix the panel to the floor by using fasteners through the holes provided at the bottom of the panel.

Page 22

Mounting Plate for Enclosure: Ensure that mounting bracket is held properly on the wall.

2.5 Installing the Sub-System

To prevent the system from Electrical noise / transients on Earth Line, please connect separate Instrument Earth to the Earth terminal screw provided on the Signal Conditioning Enclosure.

Please don't short the transmitter wires. It may cause analog input failure!

2.5.1 Installing Steam Flow Meter:

- The Steam flow meter should be installed with straight pipe of (20 x size of meter) at upstream & (5 x size of meter) at downstream of the meter.
- Please refer 'Steam flow Meter Installation diagram' in Section 11 & 'installation video' for Installation details.

2.5.2 Installing Stack Temperature Transmitter:

- Screw the adapter of Stack temperature transmitter into the ½" BSP socket welded for the same on the stack. Ensure a leak tight connection. Use Teflon tape if required.
- Pass temperature transmitter through the adapter and tighten it.
- Please refer 'Stack Temperature Transmitter Installation diagram' in Section 11 & 'installation video' for Installation details

Installation

2.5.3 Installing Ambient Air Temperature Transmitter:

- Screw the adapter of ambient temperature transmitter into the ½" BSP socket welded for the same on the combustion air duct or in the Ambient mounting bracket, depending on where the sensor needs to be installed. Ensure a leak tight connection when mounted on duct. Use Teflon tape if required.
- Pass temperature transmitter through the adapter and tighten it.
- Make sure the transmitter is protected from direct sunlight and water.

2.5.4 Installing Steam temperature transmitter:

- Install this transmitter only at the downstream of the Steam Flow meter and not before it.
- Screw the thermowell into the ½" socket welded for the same on the steam line.
- Ensure that the connection is leak tight. Use Teflon tape for sealing if required.
- Pour a small quantity of transformer oil, sufficient enough to fill the gap between the inner wall of the thermowell and the outer wall of the temperature transmitter, into the thermowell.
- Screw the temperature transmitter into thermowell.
- Please refer 'Steam Temperature Transmitter Installation diagram' in Section 11 & 'installation video' for Installation details.

2.5.5 Installing Steam pressure transmitter:

- Tapping should be provided on the steam line for connecting steam pressure transmitter.
- Connect the syphon to protect the transmitter from extreme temperatures. Water barrier formed in the syphon protects the transmitter from impurities. Size and material of the syphon should be suitable as per the pressure rating.

- Use least no. of fittings to avoid leakage problems and install as close to the steam drum as possible.
- Install the transmitter on the provided mounting bracket.
- Protect pressure transmitter from direct contact of water and other liquids.

2.5.6 Installing Feed-water temperature transmitter:

- Screw the thermowell into the 1/2" socket welded for the same on the feed-water line.
- Ensure that the connection is leak tight. Use Teflon tape for sealing if required.
- Pour a small quantity of transformer oil, sufficient enough to fill the gap between the inner wall of the thermowell and the outer wall of the temperature transmitter, into the thermowell.
- Screw the temperature transmitter into thermowell.
- Please refer 'Feed water Temperature Transmitter Installation diagram' in Section 11 & 'installation video' for Installation details.

2.5.7 Installing Stack Oxygen Probe:

- The dimensions for the hole in the flue gas duct and the mounting of the adapter plate (mating flange) are shown in the dimensional drawing below. The mating flange is to be fitted by the customer and when mounting please ensure an air tight seal.
- The part of the protection tube projecting from the duct wall must be insulated or heated, if necessary, to prevent its temperature from dropping below the dew point.
- Electrical heaters are available from FORBES MARSHALL as accessories. The bolts of the probe flange must remain accessible.
- The special cables for electronic systems must be left long enough (coiled up) so that the probe can be drawn out of the protection tube without disconnecting it.

Installation

2.5.8 Installing a Blowdown System:

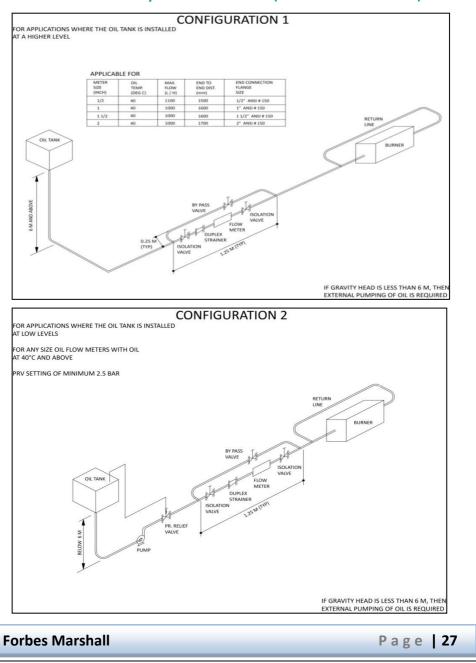
Blowdown system can be installed either for monitoring & controlling the Boiler water TDS (BBCS) or for only monitoring the TDS value (standalone TDS Sensor).

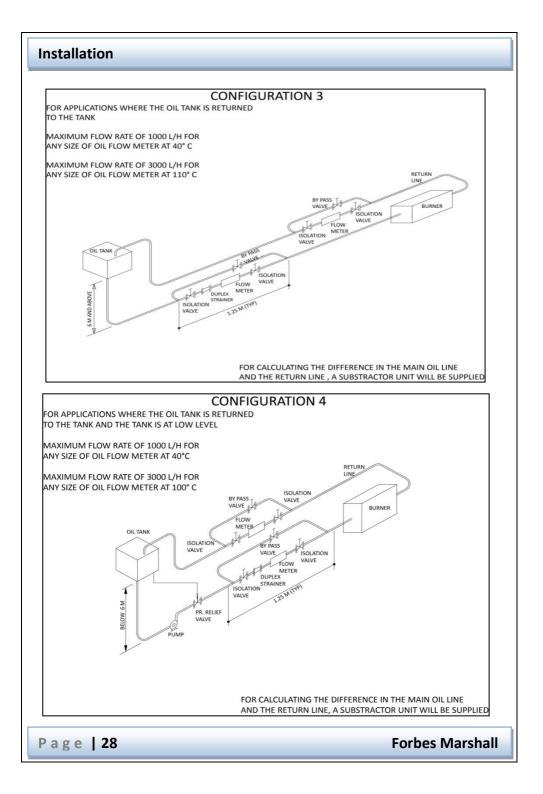
BBCS Installation:

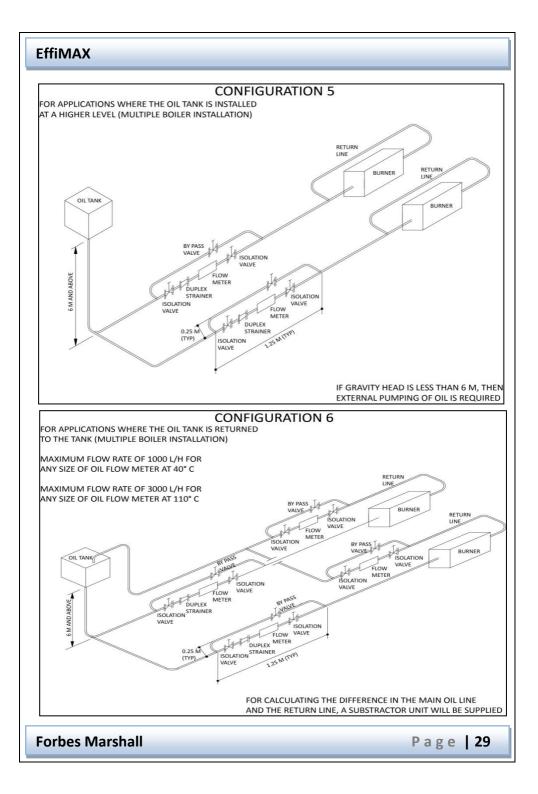
The main Blowdown valve is fitted at the bottom of the boiler for draining and removing any sludge accumulation from the bottom of the boiler. It should be fitted into the space left in the Boiler Blowdown Control System (in which a spool piece is supplied) and should be manually opened for a few seconds on a daily basis. The Boiler Blowdown Control System limits the concentration of dissolved and suspended solids in the boiler water. Therefore, the take-off point need not be from the bottom of the boiler. Indeed, using a side connection (if one exists) instead reduces the chance of scale entering the Blowdown valve. In case the system has been supplied as separate components, follow the instructions in Section 4 of this User Manual for assembling the system.

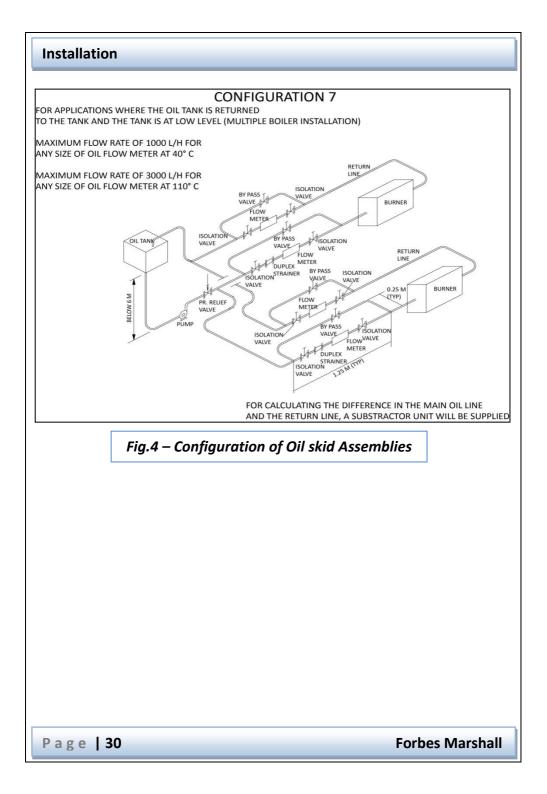
The EffiMAX Analyzer unit gives a 230/115Vac Signal for the solenoid valve to operate. This connection should be made when the unit is switched off.

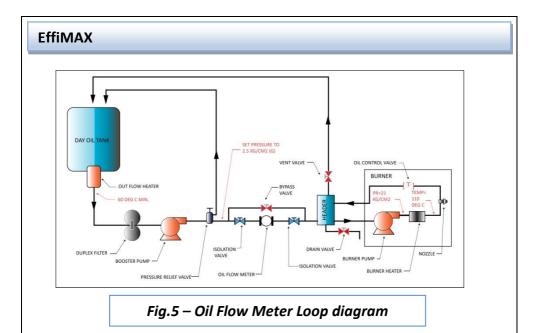
Standalone TDS sensor installation:


The TDS sensor measures the concentration of dissolved and suspended solids in the boiler water. This sensor is installed in a sensor housing chamber which is then fitted on the Blowdown line. Please refer section 4 for detailed installation instructions.




The plug tail supplied is 1.25 m long. For longer distances use a junction box and screened cable. The screen should not be connected to earth anywhere along its length.


Page | 26


2.5.9 Skid Assembly for Oil Flow Meter (Refer if fuel used is OIL)

Explanation of Oil Flow Meter Loop:-

The oil from the day oil tank is heated in a range of 50 to 55 °C. This oil is then passed through the duplex filter. The mesh size of this filter is 100 micron. This filter protects the pump and the meter from damage due to solid particulate matter. The oil is then pumped by the booster pump to the pressure relief valve. The booster pump is required to overcome the pressure drop because of filter and meter. The pressure relief valve is protected as the booster pump is a gear pump and hence gives a fixed throughput. The oil in excess of what is required by the burner is returned from this valve back to the day oil tank. The oil pressure at the exit of the pressure relief valve should be set to 2.5 kg/cm². A pressure of 2.5 kg/cm² ensures the water in the oil will not vaporize to steam and cause vapor locking problem. The oil is then sent to the meter and then to the header. This header acts like a surge tank. Typical size of this header should be about 36" in length and diameter of

Installation

about 24". The pressure in the header is now 2.5 kg/cm² because of the booster pump. The burner pump takes the oil from this header and pressurizes it to about 21 kg/cm². This pump is a gear pump and hence delivers a fixed throughput. The oil is then passed through a heater where the temperature is increased to 110 °C. Some oil is consumed by the nozzle of the burner. The quantity of oil consumed by the nozzle depends on the oil control valve installed on the return line. The pressure of the oil drops across this valve and becomes equal to the pressure applied on the downstream of this valve. Hence, the oil pressure here will be 2.5 kg/cm². The quantity of oil returned gets added to the header because of booster pump, through the meter.

For correct measurement of oil consumption, the bypass value of the meter, vent value and drain value on the header should always be kept fully closed. The two isolation values of the oil flow meter (OFM) should be kept fully open.

In systems where OFM and booster pump is not installed, the return oil from the burner is taken back to the day oil tank. As the oil is heated to 110 °C in the burner and the pressure of oil drops to atmospheric after oil control valve, the water in the oil evaporates to steam. This steam is escaped to the atmosphere hence there was no vapor locking problems. In the schematic shown above, the return oil is returned to the header instead of the day oil tank. Here the water in oil will evaporate to steam if the pressure in the header drops below 1.5 kg/cm². To avoid this, the booster pump and hence the header pressure is maintained at 2.5 kg/cm².

Also, the return pressure monitored on the burner is measured before the oil control valve. After the control, valve, the oil pressure drops down to 2.5 kg/cm² and is not equal to the pressure indicated on the burner return oil gauge. It can be easily realized that in case the return

Page | 32

oil line was kept open to atmosphere, instead of returning it to the header, the oil pressure at the valve outlet would have been atmospheric and not the valve upstream pressure. Hence, the oil being returned to the header is at 2.5 kg/cm² and not at the valve inlet pressure (which may vary between 5 to 15 kg/cm² during operation with changing fuel flow rate).

As a pressure of 2.5 kg/cm² is being applied to the downstream of the valve, instead of atmospheric, had the return line been taken back to the day oil tank, the oil throughput from the nozzle would increase for the same cam settings and damper settings. Once the booster pump is installed, the oil cam on the burner should be adjusted (oil throughput reduced) to ensure proper combustion. This can be easily done by adjusting the cam such that the return oil pressure is maintained as it was before installing the booster pump.

2.5.10 Installing F to I converter:

- Make sure the Input Frequency range of the converter provided is according to the oil flow meter sizing. (Default range is 0 to 37.5 Hz)
- Please confirm external supply voltage. It can be either 0-230 volt AC or 0-110 volt AC.
- F to I converter should be installed near the Oil flow meter or inside the panel on 35 millimeter DIN rail.
- Protect F to I converter from direct contact of water and other liquids.
- Please refer the 'Oil Flow Meter Installation' Video for connection details.

2.5.11 Installing R to I converter:

- Make sure the Input resistance range of the converter provided is according to the servomotor output.
- The variation in resistance is either from 0 to 150 ohm or 0 to 1 kilo ohm.

Installation

- Please confirm external supply voltage. It can be either 0-230 volt AC or 0-110 volt AC.
- R to I converter should be installed near the Servomotor or inside the panel on 35 millimeter DIN rail.
- Protect R to I converter from direct contact of water and other liquids.
- Please refer the 'Firing Feedback Signal Installation' Video for connection details.

2.6 Cable and Wiring of sub-system and analyzer

Lay down the cables from the sub-systems to the Signal Conditioning unit. Use the below given check list to make sure that all the cables are laid as per the specifications given in the above section.

Power supply cable for Panel unit :
 3 core, 14/36 gauge, 5A Mains Power Cord

3 core, 14/36 gauge, 5A Mains Power Cord with Molded 3 pin male socket connection & other end open.

Special Cable from the oxygen sensor to the Signal Conditioning unit.

Shielded 2 core cable from :

Cable Connection	EffiMAX 1000	EffiMAX 2000	EffiMAX 3000	EffiMAX 4000
1. Stack temperature transmitter to Panel.	-	٧	٧	٧
2. Feed water temp. Transmitter to Panel.	v	٧	٧	V
3. Ambient temperature Transmitter to Panel.	-	٧	v	v
4. Steam temperature transmitter to Panel.	٧	٧	٧	v
5. Steam flow meter to Panel.	٧	٧	v	v
6. Oil flow meter to Panel.	٧	-	٧	V
Forbes Marshall			Pag	e 35

Installation

7. Gas flow meter to Panel.	٧	-	v	v
8. Firing F/B to Panel.	-	-	-	v
9. Blowdown valve to Panel.	٧	٧	v	v
10. BBCS Sensor cable to Panel	v	٧	v	v
11. FD Output to Variable Frequency Drive.	-	٧	-	v
12. Drum level control Output to control valve.	-	٧	-	v
13. Oil Selection F/B to Panel	v	-	v	v
14. Gas Selection F/B to Panel	v	-	v	v
15. Burner ON/OFF contactor to the Panel.	v	٧	٧	v

LAN cable from the Effisense from panel to Effisense CPU.

> TDS Special cable from :

1. TDS sensor to the panel.

 \checkmark Please refer to each mechanical and electrical installation sub-section for specific wiring diagrams and directions.

Page | 36

 \checkmark

Use Proper size of lug suitable for 0.5 to 1 sq.

mm wire with length of 6-8 mm for termination on both analyzer and sub-system side.

Use Proper size of ferrule suitable for 1 to \checkmark wire for terminal number 1.5 sq. mm identification.

 \checkmark Use weatherproof cable glands to keep the water, oil, and moisture entering inside the analyzer unit.

Connect all the wires coming from the field \checkmark mounted sensors to the effiMAX panel terminals.

Forbes Marshall

Installation

2.7 Connection Details

2.7.1 Terminal Connection Details (Connect as per the panel drawings).

Note:

PE= POWER EARTH

IE= INSTRUMENT EARTH

The Toroidal Transformer gets the supply from the Signal Conditioning Motherboard. Please do not turn the unit ON unless proper connection is done.

The O2 Heater signal is mains 115V/230V hence do not touch the connectors wherever caution is indicated.

To prevent the system from Electrical noise / transients on Earth Line, please connect separate Instrument Earth to the Earth terminal screw provided on the Signal Conditioning Enclosure.

2.7.2 Terminal Connection Diagram:

Group Marker	Terminal No	Connection Details
	1	Live
Panel Input	2	Neutral
230VAC 50Hz	3	Earth
	4	Instrument Earth
24VDC BB1		For internal 24vdc
	1	Ambient TT
	2	Ambient I I
	3	Charace TT
	4	Steam TT
	5	Stack TT
	6	SLACK II
	7	FW TT
	8	
AITB1	9	Steam Flow
	10	Steam now
	11	Oil Flow
	12	Cirriow
	13	Input from BBCS Sensor:
	14	TDS Input (Yellow)
		TDS Input (Red) Input from BBCS Sensor:
	15	Blowdown Temp Input (White)
	16	Blowdown Temp Input (White)

Forbes Marshall

Ins	stallation		
		I	
		1	O2 Probe (Brown)
		2	O2 Probe (Brown-White)
		3	O2 Probe (Green)
		4	O2 Probe (Green-White)
		5	Drum level
		6	Druin level
		7	Firing ED
		8	Firing FB
	AITB2	9	
	ALLPZ	10	Sup Steam Pr/NC
		11	
		12	Gas Flow
		13	NG
		14	NC
		15	NG
		16	NC
		17	NG
		18	NC
		1	NC
		2	NC
		3	NC
		4	NC
	AITB3	5	Flexi 1
	ALLPS	6	FIEX 1
		7	Flexi 2
		8	
		9	Flexi 3
		10	
D	age 40		Forbes Marshall
F C			

	11	- Flexi 4
	12	
	13	Flexi 5
	14	
	15	Flexi 6
	16	
	1	Flexi 7
	2	
	3	- Flexi 8
4	4	
	5	- Flexi 9
	7	Flexi 10
AITB4	8	
AIT D4	9	Flexi 11
	10	
	11	Flexi 12
	12	
	13	NC
	14	
	15	NC
	16	
	1	
AOTB1	2	O2_RxTx
AUIDI	3	
	4	TDS_RxTx

Forbes Marshall

4

Installation		
	5	
	6	O2_PID_OP
	7	FD1_OP
	8	
	1	
	2	DL_OP
	3	NC
	4	NC
AOTB2	5	NC
	6	
	7	
		NC
	8	NC
	8	
		NC
	8	NC
	8 1 2	
AOTB3	8 1 2 3	NC
АОТВЗ	8 1 2 3 4	NC
AOTB3	8 1 2 3 4 5	NC

ΜΑΧ		
	1	
	2	NC
	3	NG
A OTD 4	4	NC
AOTB4	5	NC
	6	NC
	7	NC
	8	NC
	1	Deiler Or /Off
-	2	Boiler On/Off
	3	Oil Flow Selection
	4	On How Selection
	5	Gas Flow Selection
	6	
	7	Blowdown Valve I/P
DITB1	8	
222	9	Oil Pulse I/P
	10	
	11	NC
	12	
	13	NC
	14	
	15	NC
	16	

Forbes Marshall

Installation

	1	Blowdown Valve 230VAC L (Through 1 A fuse)
	2	NC
	3	NC
DOTB1	4	NC
	5	NC
	6	NC
	7	NC
	8	NC

02 Heater	1	O2 Probe Blue (Through 4 A fuse)
O2 Heater	2	O2 Probe Black

Page | 44

2.8 Commissioning the Product

• Each sub-system must be properly installed, commissioned and maintained to ensure correct efficiency readings. Please refer to each sub-system's section to properly commission your EffiMAX.

• After completion of all the installation and wiring, SWITCH ON the unit.

• Click on Restore to Default on Product page and check the range sheet as shown below to confirm that the values of all the parameters (like the maximum and the minimum values of the Steam Flow Rate) are as per your application.

Default Ranges:

Parameter	Minimum Range	Maximum Range
Stack Temperature	0 °C	400 °C
Ambient Air Temperature	0 °C	100 °C
Steam Temperature	0 °C	300 °C
Feed water Temperature	0 °C	200 °C
Stack Oxygen	0 %	20.9 %
Steam Flow	0.0 kg/h	5000 kg/h
Oil Flow	0.0 lit/hr	800 lit/hr
Oil Flow	0.0 lit/hr	800 lit/hr
Steam Pressure	0.0 kg/cm ²	16.0 kg/cm ²
ID Pressure	-25 mmWC	25 mmWC

Forbes Marshall

Installation

• In case you need to change any of these, please refer to the individual sub system details given in section 4 of this manual.

• In applications where Oxypro has been supplied, please ensure that the dedicated electronics of the Oxypro (SME5) is powered on. It takes about 30 minutes for the sensor to heat up to the operating temperature. Correct oxygen readings will be shown only after this time.

- The default timer settings for the BBCS are
 - 30 minutes between purges
 - 30 seconds for the purge cycle
 - 20 seconds for each blow-down
 - 20 seconds between each blow-down

• Please refer to BBCS details in section 5 of this manual to study the automatic blow-down controller operation and for making changes to the timer values if required.

• Although boiler efficiency is continuously displayed on the unit, it is updated only when the Burner On/Off signal is present. The updating starts about 20 seconds after the signal goes high and is then updated continuously till the signal is present. The Efficiency and losses values are held made 0 when the signal goes low. The parameters being monitored and measured directly are still updated continuously.

• Monitor the system before taking control actions from the effiMAX panel, once the system is stable start taking control loops one by one in auto mode.

• Start with Feeder control which is based on steam pressure, then take FD fan in control based on O2 levels & finally ID in auto mode which is based on furnace pressure.

• Ensure that proper negative draft is maintained in furnace.

• For detailed sensor installations refer Commissioning software & videos prepared for those sensors.

• This completes the commissioning of EffiMAX.

Page | 46

SECTION 3: Eversense INSTALLATION

- To view Data on the computers in LAN through EffiSense Software, refer installation guidelines of Eversense.
- Ethernet settings for eversense machine:

IP Address: 192.168.1.200 Subnet Mask: 255.255.255.0

- System Settings:
 - 1. Product: effiSENSE
 - 2. Logo: effiSENSE
 - 3. No of rows in Device Settings: 200.

everSENSE			
			Welcome superuser
e estings Section	Plant Name	FM	
- R Plant Settings	Plant Address	India	*
-B User Specific Parameters Benchmark Configuration	Shift Timings	Shift 1 06:00 Shift 2 14:0	00 Shift 3 22:00
Param Asset Configuration	Day Definition	Standard •	
e 🔁 User Management	Auto delete minute data older than	9 • Months	Warning: Data once deleted cannot be recovered
Change Password User Configuration	Max Rows in Device Settings	200	
- B User Type Configuration - Custom Report Settings	Product Data Restoring	everSENSE	Logo everSENSE ·
			et
	Conversion & 2020 Eachard	Maechall Det. Ltd. All Diabte Dec	-
	Copyright © 2020 Forber	Marshall Pvt. Ltd. All Rights Res	-
	Copyright © 2020 Forber	Marshall Pic, Ltd. All Rights Res	-
	Copyright: © 2020 Forber	Maruhali Pve, Ltd. All Righta Res	-

Internet Settings

• Device Settings:

1. Channel Configuration:

- Add Device: Select respective variant name from drop down list.
- IP address: IP address of the ER CPU port in use.
- Port 502
- Channel Type- Ethernet.
- Click on Save to reflect the changes in settings.

	everSE	NSE		C HOME			(<u>A</u>)) •			G¢ 000ur			
ſ	Channel	Configura	tion Ch	nannel Type :		Serial	O USB			riceselec	rt device	•	
ç	Chonner	coniguro		nannel Name				ess 192.168		Port 502			
S	a Seve	Station D	Jata Type	Modbus	Database Tag	Unit	Count Low	Count High	Min Range	Max Ranga	Offset	Parameter Name	MSB/ LSB
	1 1	1	Real •		Ambient Temp	°C	0	4095	0	4095	0	Ambient, Temp	LSB ·
	2 1	1	Real •		TF_Inlet_Temp	°C	0	4095	0	4095	0	TF_Inlet_Temp	LSB ·
	a 🗸	1	Real •	40005	TF Outlet Temp	°C		4095	0	4095	0	TF_Outlet_Temp	LSB ·
	4 1	1	Real v		Stack_Temp	°C	0	4095	0	4095	0	Stack_Temp	LSB V
	5 🖌	1	Real •	40009	TF_Flow	Kg/h	0	4095	0	4095	0	TF_Flow	LSB +
	6	1	Real •	40011	Solid_Fuel_Flow	Kg/h	0	4095	0	4095	0	Solid_Fuel_Flow	LSB •
							ave			Caution: Ch	annion the	e Database Tag' will cau	se loss of da
6						_	_				and a mine		
	S COU	imunicati	1011		Copyright	@ 2020 P		shall Pvt. Ltd.	All Highes He	served.		03-Jan-2020	10:04:1
everSE	a.					• ((<u>A</u>		~~ ~				Welcon	FORB MARSH
	a.				RENDS REPORTS Values at	• ((<u></u> ALARI : 03-Jan	NS SET	TINGS HI		- cour	Q	Welcon Search for tags.	MARSH
	ENSE	FM	t H		TRENDS REPORTS	: 03-Jan	NS SET	TINGS HI		IGOUT			MARSH
	ENSE	FM All Assets	t H		TRENDS REPORTS	: 03-Jan As:	NS SET	TINGS HI					MARSH
	ENSE	FM	t H		Values at	: 03-Jan As: P	-2020	TINGS HI		IGOUT			MARSH
	ENSE	FM All Assets	t H		REPORTS Values at Ambient_Tem TF_Inlet_Tem TF_Outlet_Ter	: 03-Jan As: p	-2020 -2	TINGS HI		IGOUT			MARSH
	ENSE	FM All Assets	t H		REPORTS Values at Ambient_Tem TF_Inlet_Temp TF_Outlet_Ten Stack_Temp	: 03-Jan As: p	-2020 -2020 -2020 -210 °c 240 °c 240 °c	TINGS HI		IGOUT			MARSH
	ENSE	FM All Assets	t H		Ambient_Tem TF_Inlet_Tem TF_Outlet_Tem TF_Flow	: 03-Jan Ase p mp	set 32 rc 210 rc 240 rc 240 rc 5033 rc	TINGS HI		IGOUT			MARSH
	ENSE	FM All Assets	t H		RENDS REPORTS Values at Ambient_Tem TF_Inlet_Tem TF_Outlet_Ter Stack_Temp TF_Flow Solid_Fuel_Flo	: 03-Jan Ase p mp	-2020 -2020 -2020 210 °C 240 °C 240 °C 5033 × 0 Kgh	TINGS HI		IGOUT			MARSH
	ENSE	FM All Assets	t H		RENOS REPORTS Values at Ambient_Tem TF_Inlet_Tem TF_Outlet_Tem Stack_Temp TF_Flow Solid_Fuel_Flo Dil_Flow	: 03-Jan Ase p mp	из set -2020 32 гс 210 гс 240 гс 240 гс 5033 к 0 кућ 0 кућ	10:55:29		IGOUT			MARSH
	ENSE	FM All Assets	t H		RENDS REPORTS Values at Ambient_Tem TF_Inlet_Tem TF_Outlet_Ter Stack_Temp TF_Flow Solid_Fuel_Flo	: 03-Jan Ase p mp	-2020 -2020 -2020 210 °C 240 °C 240 °C 5033 × 0 Kgh	10:55:29		IGOUT			MARSH
	ENSE	FM All Assets	t H		RENCE REPORTS Values at Ambient_Tem TF_Inlet_Tem TF_Double_Ten Stack_Temp TF_Flow Sold_Fuel_Fid Od_Flow Gas_Flow	: 03-Jan As: p o mp	из set -2020 - -210 гс 240 гс 240 гс 5033 к 0 Кул 400 Nm	10:55:29		IGOUT			MARSH
	ENSE	FM All Assets	t H		RENCE REPORTS Velues at Ambient_lem TF_Inlet_lem TF_Outlet_Te Stack_Temp TF_Flow Solid_Fuel_Fik OI_Flow Gas_Flow Stack_02	: 03-Jan As: p o mp	из set -2020 - -210 °с 240 °с 240 °с 240 °с 5033 к 0 Кућ 400 №г 4.1 %	10:55:29		IGOUT			MARSH
everSE	4 ENSE	FM All Assets Asset	t H		Ambient_Term TF_Inlet_Term TF_Culet_Term TF_Culet_Term Stack_Term TF_Flow Solid_Fuel_Fic Oil_Flow Stack_02 02_Probe_Ter	: O3-Jan Ass p p p p p mp	мз set -2020 32 гс 210 гс 240 гс 240 гс 5033 к 0 крh 400 Nm 4.1 % 0 гс	ал ал		No para		Search for tags.	MARSH
everSE	ENSE	FM All Assets Asset	t H		Ambient_Term TF_Inlet_Term TF_Culet_Term TF_Culet_Term Stack_Term TF_Flow Solid_Fuel_Fic Oil_Flow Stack_02 02_Probe_Ter	: O3-Jan Ass p p p p p mp	мз set -2020 32 гс 210 гс 240 гс 240 гс 5033 к 0 крh 400 Nm 4.1 % 0 гс	10:55:29		No para			MARSH
everSE	4 ENSE	FM All Assets Asset	t H		Ambient_Term TF_Inlet_Term TF_Culet_Term TF_Culet_Term Stack_Term TF_Flow Solid_Fuel_Fic Oil_Flow Stack_02 02_Probe_Ter	: O3-Jan Ass p p p p p mp	мз set -2020 32 гс 210 гс 240 гс 240 гс 5033 к 0 крh 400 Nm 4.1 % 0 гс	ал ал		No para		Search for tags.	MARSH
everSE	4 ENSE	FM All Assets Asset	t H		Ambient_Term TF_Inlet_Term TF_Culet_Term TF_Culet_Term Stack_Term TF_Flow Solid_Fuel_Fic Oil_Flow Stack_02 02_Probe_Ter	: O3-Jan Ass p p p p p mp	мз set -2020 32 гс 210 гс 240 гс 240 гс 5033 к 0 крh 400 Nm 4.1 % 0 гс	ал ал		No para		Search for tags.	MARSH

SECTION 4: OPERATING EFFIMAX

4.1 Operating the System from Plant Level

4.1.1 EffiMAX Display:

• After powering up, the first screen (Mimic Screen) displayed on HMI displays all the measured parameter values from the field and the calculated efficiency value with the losses.

• The figure given below gives the details of the Display unit. This screen is called the **Mimic** Screen. There are four main screens as below. You can change over from one screen to another by touching / clicking these buttons.

- The Mimic screen contains the link to the following screens:
 - 1. Flexi
 - 2. Trends
 - 3. Alarms
 - 4. Settings


Mimic Screen:

The HMI has 2 mimic screens :

- 1. Mimic 1 : All Monitoring parameters
- 2. Mimic 2 : All control related parameters

The parameters displayed on these screens will be updated after every second.

Mimic 1 :

Page | 50

Operating EffiMAX

Mimic 2 :

MIMIC I	FLEXI I	TRENDS I	ALARM	5 I	SETTINGS	O
Trim Control:	~					
Firing Rate	Stack O ₂ SP	Trank				
0.0 %	0.00 %	Trend:			Trim Control_Gas	
FD FAN O/P	Stack O ₂	80.0 -				
0.0 %	4.10 %	60.0 -				
Drum Level Cor	ntrol: 📈	40.0				
PV	SP	Ē				
75.0%	0.0%	20.0			\square	
0/	Р	0.0	·	15:03	15:05	15:06
0.	0%					
		PV:	SP:	O/P:		31/12/2019 - 15:05:3
		©Copyrig	ht Forbes Marsha	ll Pvt Ltd	Selected Fuel: Ga	s E4KDual Fuel

The Trends button on each control displays the Trends of that control loop in the Trends section of this page.

Black Mimic :

EffiMax					
MIMIC	FLEXI I TI	RENDS I AL	ARMS I SET	TINGS	Opr
		MIMIC 1	MIMIC 2		
Steam Flow	Steam Temp	Steam Press	Efficiency	Stack Loss	Enthalpy Loss
4000 _{kg/h}	180.0 _{°C}	9.0 _{bar(g)}	82.12 %	4.32 %	12.81 %
Steam Total	S:F Ratio	Ambient Temp	Radiation Loss	Unburnt Loss	Blowdown Loss
8207 _{kg}	20.00	34.0 _{°c}	0.25%	0.50%	0.00%
Feedwater Temp	Drum TDS			Stack Temp	Stack O₂
56.0 °c	3000 _{ppm}		•	<u>152.0 ∘</u>	4.10 %
30.0 %	5000 ppm	BOILER O	N -	152.0 (1.10 %
Blowdown Total		1		Fuel Flow	Fuel Total
47 _{kg}				120kg/h	166 _{kg}
		Next Purge After :	30.0min.		31/12/2019 - 13:55:34
U		© Copyright Forbe	s Marshall Pvt Ltd	Selected Fuel: Gas	E4KDual Fuel

One more feature of dark theme is provided, it enhances visual ergonomics by reducing eye strain and providing comfort of use at night or in dark environments.

Flexi Screen:

The Flexi screen shows real time values of the additional parameters configured in effiMAX. Maximum 12 parameters can be configured in one system.

ffiMax					
MIMIC I FLEXI	I TRENDS	1	ALARMS I SETT	TINGS	Opr
Flexi Parameter	Value Unit	Total Reset	Flexi Parameter	Value Unit	Total Reset
Steam Flow 1	2000.0 kg/h		SPM	30.0 mg/Nm3	
Steam Total 1	933 kg				
Feedwater Hardness	150.0 ppm		Feedwater Flow	2200.0 kg/h	
			Feedwater Total	1012 kg	
					2/2019 - 12:02:08
	C	Copyright F	orbes Marshall Pvt Ltd	Selected Fuel: Gas	E4KDual Fuel

This screen shows parameter's live value, unit & its totalized value (if selected from settings). The totalizer can be reset from this screen by turning ON the checkbox.

Trends Screen:

The Trends screen shows real time Trends in groups. The groups are created as per the type of parameters.

EffiMax						
MIMIC I F	LEXI I T	RENDS	ALARMS		SETTINGS	Opr
Temperatures	• 500.	.0		Rea	ITime Temp. Trend	
Amb. Temp.		-				
FW Temp.	400.	.0				
Blowdown Temp.		-				
Steam Temp.	→ 300.	.0				
Stack Temp.		-				
	200.	.0				
		-				
	100.	.0 _ 0.				
		-				
	0.	.0 13:10:48	13:20	:48	13:30:48	13:40:48
						31/12/2019 - 13:40:48
U		Copyri	ght Forbes Marshall Pvt	Ltd	Selected Fuel: Gas	E4KDual Fuel

Option No.	Groups
1	Temperatures
2	Flow
3	Losses
4	Percentage

Option No.	Groups
5	Others
6	Flexi Inputs 1
7	Flexi Inputs 2

Page | 54

Alarm Screen:

The alarm screen displays the alarm values of different parameters which are deviated either from the high limit values or the lower limit values.

The active alarms are displayed on Active Alarms screen with red background with State being displayed as "Triggered not Acked". The alarm can be acknowledged by ACK button on this screen. The alarms which were active but its condition has now become healthy are shown in the Alarms History page which can be opened by clicking on the alarm History button on this screen. An array of last 15 alarms will be shown on screen.

//ax MIMIC	1	FLEXI	1	TRF	NDS	1	ALAR	RMS	L L	SETTIN	IGS			2
						ļ	Active Ala	arms				-	Alarm H	History
Select		Time	1				Descrip	otion					State	9
		: 2019 12:0	_	Temp less										t Acked
	31 Dec	: 2019 12:0	Sta	c <mark>k Oxyge</mark> r	n Probe	Temp	higher tha	an High	SP			Trigge	red No	t Acked
	<i>d</i> - 1 <i>0</i>	te de calenda	1]					[1 (.)()(
	Check/I	Jncheck All	I	Filter :	Hide Not Tri	iggered				-	ck) (Reset		Save
	Check/I	Jncheck All		Filter :	Hide Not Tri	iggered				•	ck (Reset		_
	Check/I	Jncheck All		Filter :]					.2/2019
	Check/I	Jncheck All		Filter :			ht Forbes Ma	arshall Pvt	Ltd			Reset		_
	Check/I	Jncheck All		Filter :			ht Forbes Ma	arshall Pvt	Ltd					.2/2019
	Check/I	Jncheck All		Filter :			ht Forbes Ma	arshall Pvt	Ltd					.2/2019
	Check/l	Jncheck All		Filter :			ht Forbes Ma	arshall Pvt	Ltd					.2/2019
	Check/I	Jncheck All		Filter :			ht Forbes Ma	arshall Pvt	Ltd					.2/2019
	Check/I	Jncheck All		Filter :			nt Forbes Ma	ırshall Pvt	Ltd					.2/2019
	Check/I	Jncheck All		Filter :			ht Forbes Ma	arshall Pvt	Ltd					.2/2019
	Check/I	Jncheck All		Filter :			ht Forbes Ma	ırshall Pvt	Ltd					.2/2019
	Check/l	Jncheck All		Filter :			ht Forbes Ma	arshall Pvt	Ltd					.2/2019
	Check/I	Jncheck All		Filter :			ht Forbes Ma	arshall Pvt	Ltd					.2/2019
	Check/I	Jncheck All		Filter :			ht Forbes Ma	irshall Pvt	Ltd					.2/2019
	Check/I	Jncheck All		Filter :			ht Forbes Ma	irshall Pvt	Ltd					.2/2019
	Check/I	Jncheck Al		Filter :			ht Forbes Ma	ırshall Pvt	Ltd					.2/2019
	Check/U	Jncheck All		Filter :			Horbes Ma	arshall Pvt	Ltd					.2/2019
				Filter :			ht Forbes Ma	arshall Pvt	Ltd					2/2019 E4KD
Ma				Filter : [ht Forbes Ma	In the second	Ltd					.2/2019

Settings Screen:

The settings screen contains the following options:

1. O2 Calibration: To calibrate the Oxygen analyzer with standard gases.

2. PID Controller: To adjust the PID parameters of O2 Probe temperature, FD and Drum Level control.

3. Boiler Data: Boiler specific data is entered on this screen.

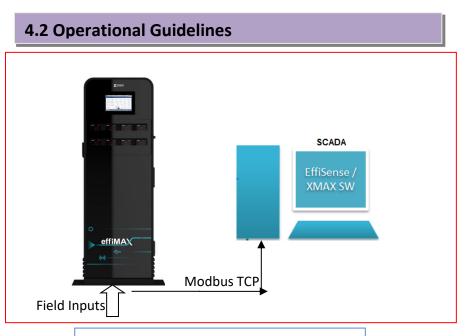
4. Fuel type: These settings are used select the type of fuel likewise FO, HUSK or Coal.

5. Blow Down: To calibrate the TDS sensor as well adjustment for purge time.

6. Limits: To specify Min & Max limits for the calculated variables.

7. Range: This screen is for entering the transmitter ranges.

9. System: System Screen is used to check and set date, time, brightness of HMI, IP address of HMI, AI/AO/DI/DO connection details navigations, etc.


10. Pulse (Oil Flow Input): For Pulse related settings of oil flow meter.

11. Product: To select the EffiMAX variants, type of fuel flow meter, type of Density calculation and type of Oxygen signal as well.

12. Alarm Limits: This screen is used to set the high & low Alarm Limits of the parameters.

For detailed explanation on the Settings screen please refer Assembly & Testing section.

Operating EffiMAX

Fig. 6 Hardware Architecture

As shown in the diagram, the effiMAX consists of Panel unit and data logging unit. The panel unit is with a touch screen HMI which will display the online boiler data. The product performs following tasks simultaneously:

- Accepts inputs from all the field-mounted sensors.
- Displays the readings of all the parameters with their units.
- Computes individual losses of the boiler and the over-all efficiency.
- Directly or indirectly calculates the steam to fuel ratio from the consumption & generation of the boiler (depending on the variant selection).
- Measures and controls the TDS of the boiler drum water.
- Maintains the O2 cell operating temperature.
- Maintains Oxygen levels through FD fan control logic.

- Provides an interface to the user for programming the required parameters.
- Provides remote data interface through LAN or any client server based network.
- Provides remote health checkup of the boiler house by viewing data remotely from any geographical place through internet.

Below mentioned settings needs to be done specific to the customer's site.

Page | 58

Operating EffiMAX

Screens to be set as per the variant selection:

Sr. No.	Screens Visible	EffiMAX 1000	EffiMAX 2000	EffiMAX 3000	EffiMAX 4000
1	O2 Calibration	V	V	V	V
2	PID Controller	٧	٧	٧	V
	FD Fan Control Oil	-	-	-	V
	FD Fan Control Gas	-	-	-	V
	Drum Level Control (Optional)	-	-	-	V
3	Boiler Data	٧	٧	٧	V
4	Fuel Type	٧	٧	٧	V
5	Blowdown	(Optional)	٧	٧	V
6	Limits	٧	٧	٧	V
7	Range	٧	٧	٧	V
8	OFM	٧	-	٧	V
9	Product	٧	٧	٧	V
10	Alarms	٧	٧	٧	V

4.2.1 The O2 calibration screen:

- To calibrate the Oxygen analyzer with standard gases.

Please perform the single point calibration for the O2 probe:

1. Ensure that boiler is in off condition and probe temperature is maintained at 800 deg C.

- 2. Open the sensor calibration port of O2 sensor.
- 3. Press Calibrate Span button.
- 4. Connect the test gas to the calibration port.
- 5. Enter the calibration gas O2 percentage value.
- 6. Press Calibrate Slope button.

MIMIC I	FLEXI				TTINGS		
O2 Cal	PID	Boi	ler Data Fuel	fype Blowd	down	Limits	Range
System		Pr	oduct Alarm	Limits			
O2 Calibrat	ion						BOILER OFF
Furnace Temp	p. (°C) 79	98.0	Calibration Type	Parameter	Current	New	
Stack O ₂ (%)	20	0.90		Cell Constant	0.00	-5.00	
Actual Count		0	Manual	Slope	45.0	45.0	Save
Cell Constant	-10	0.00					Calibrate
			Span	Cell Constant	0.00	-10.00	Save
				Test Gas O ₂ (%)		2.0	Calibrate
			Slope	Slope	45.0	-9.8	Save
							31/12/2019 - 12:0
			Copyright Forbe	s Marshall Pvt Ltd		d Fuel: Gas	E4KDual Fu

Forbes Marshall

4.2.2 PID Controller screen:

- To adjust the PID parameters of Oxygen Probe Temperature control.

EffiMax						
MIMIC I	FLEXI I	I TRENDS I A	LARMS I <mark>se</mark>	TTINGS		Opr
O ₂ Cal	PID	Boiler Data Fue	Type Blowd	lown	Limits	Range
System		Product Alarm	n Limits		O2	Heater 🔹
O ₂ Heater Mode:	Auto					
Stack O ₂ (%) :	20.90		02	Heater Control	Trend	
O2 Probe Temp (°C)	798.0	1200.0 -				
Output (%)	0.0	960.0				
Manual Output (%) :	9.5	=				
Probe Temp SP (°C) :	800.0	720.0				
P - Gain :	1.0	Ξ.				
I - Time :	10.0	480.0 =				
Startup Time (min) :	5	240.0 -				
SP Offset :	30					
Min ∆T (°C):	0.1	0.0 — L 11:46	11:56		12:06	12:16
Min ∆Time (m) :	2	11:40	11:50		12.00	12:10
O/P max :	75.0	Enable Heat	er Manual	PV:	SP:	O/P:
O/P min :	0.0					
					31/1	2/2019 - 12:16:42
		© Copyright For	bes Marshall Pvt Ltd	Selected F	uel: Gas	E4KDual Fuel

Below mentioned are the default values for the PID control:

- 1. Set Point 800 °C
- 2. Proportional Gain 1
- 3. Integral Time 10 sec
- 4. Startup Time 5 min
- 5. SP Offset 30 °C
- 7. Minimum Delta Temperature 0.1 °C
- 8. Minimum Delta Time 2 min
- 9. O/P Max 75%
- 10. **O/P Min** 0%

Bump less transfer: To avoid Sudden changes while switching from Manual to Auto mode and vice versa.

Forbes Marshall

4.2.3 Boiler Data:

• Boiler specific data is entered on this screen.

MIMIC		FLEXI	1	TRENDS	I	ALARMS	5 1	SETTINGS	
O_2 Cal		PID	B	oiler Data		Fuel Type	Blo	owdown Limits	Range
System				Product		Alarm Limits			
Boiler	Data								
Boiler Ca	pacity (k	:g / h)	1000.0	Fuel D	Densi	ty (kg/L)	0.80	S:F Ratio Averaging Time (n	nin) 30
Oxygen 0	utoff Va	lue (%)	15.0	Fuel C	utoff	Value (kg / h)	10	Boiler Unburnt Loss (%)	0.5
Boiler Sta	rtup Tin	ne (s)	10	Steam	Den	sity	5.164	Steam Enthalpy	663.567
GA Gain I	nput A1		0.000	BA Ga	in Inp	out A1	0.000	Max. Steam Pressure (bar(g)) 16.0
GB Gain I	nput A2		0.000	BB Gai	n Inp	out A2	0.000	Boiler On-Off Count	e
GC Gain I	nput A3		0.000	BC Ga	in Inp	out A3	0.000	Oil On-Off Count	3
GO Gain	Output	C	0.000	BO Bia	is Ou	tput C	0.000	Gas On-Off Count	3
Reset To Steam_	cano or	Steam_Gas	Blowe	down	Fuel	Boiler	OnOff Cou	unt Oil OnOff Count	Gas OnOff Con

a) Boiler Capacity:

The Steam generation capacity of Boiler in kg/h is entered here.

b) Boiler Startup Time:

This indicates the time duration for the combustion to stabilize. The efficiency calculation starts after this initial time has elapsed.

c) Oxygen Cut Off Value:

This value is used to display the boiler status in case Boiler on/off signal is not connected. If the value set is 15.0, then software presumes that if Oxygen value is greater than 15.0 % the boiler is off.

d) Boiler Un-burnt Loss:

This loss is manually entered to take care of the un-burnt losses which are not measured.

Page | 62

e) Fuel density:

This entry indicates the density of the fuel being fed in. For Solid fuels this value will be 1.

f) S:F Ratio Averaging Time:

This period is the time during which the averaging of S:F ratio is done. By default it is 30 mins. This value is important to get the accurate S:F ratio.

g) Fuel Cutoff Value:

System has a provision to detect Boiler On/OFF on fuel flow value if digital contact is unavailable. Fuel flow cut off value indicates the threshold value below which boiler will be considered as OFF.

h) Steam Density:

This is calculated parameter based on the Steam Temp and Steam Pr., this will be used when Steam flow input is Volumetric.

i) Steam Enthalpy:

This is calculated parameter based on the Steam Temp and Steam Pr., this will be used for direct efficiency calculations.

j) Constants (GA, GB, BA, BB...):

This is calculated parameter based on orifice plate parameters; this will be used for delta P based steam flow calculations. Contact Forbes Marshall representative for this data.

k) Boiler On-Off Count:

This will indicate the total number of times boiler shutdown, value will be reset after 65535.

I) Oil On-Off Count:

This will indicate the total number of times boiler changeover to Oil, value will be reset after 65535.

m) Gas On-Off Count:

This will indicate the total number of times boiler changeover to Gas, value will be reset after 65535.

n) Reset Totalizers:

These 4 totalizer buttons to be used to reset that specific totalizer value to zero.

Page | 64

F

4.2.4 Fuel Type:

- These settings are used select the type of fuel likewise HUSK Coal, etc.
- Choose the type of fuel being used in the boiler.
- By changing the fuel type the constants related to each fuel will change accordingly. And these values are taken for further calculations.
- effiMAX is a versatile unit designed to run on various types of fuels.
- The fuel type selection is important because the efficiency calculations use different types of constants (like – calorific value of fuel, etc.) which are specific to each type of fuel.
- The fuel type of your boiler is factory set.

ax	_				_					_		
MIC	I	FLEXI	I	TREND	S I	ALAF	MS	SET	TINGS			
Cal		PID		Boiler Dat	:a	Fuel Typ	e	Blowdo	wn	Limits		Rang
tem				Product		Alarm Lim	iits					
ype of	Fuel				Efficien	icy Calcula	tions ar	e on GCV	basis			
ıel Data	base :		NaturalG	Gas	-							
			Г									
ser Defi	ned :		Set Use	er Defined								
(Current F	uel	GCV	NCV	KGR	Knet	К	mH ₂ O	н	Density		
Ga	s_Natur	alGas	45980	35308	0.35	0.39	11.90	1.500	24.400	0.800		
						Save						
											31/12	2/2019 - 1
					©Copyr	ight Forbes Ma	arshall Pvt l	td	Selecte	ed Fuel: Ga	s	E4KDual
: Fo	r firs	st tin	ne us	ser nee	©Copyr ed to	Save ight Forbes Mi D defii	arshall Pvt L	iel ty	Selecte De fo	r oil a	s nd g	_{Е4к} as,
												moi
or e	ver	y swi	itcho	ver pr	evic	ously s	elec	ted f	uel ty	pe w		men
or e	ver	y swi	itcho	ver pr		-		ted f	uel ty	/pe w		men
or e	ver	y swi	itcho	ver pr		effect		ted f	uel ty	pe w		men
or e	ver	y swi	itcho	ver pr		-		ted f	uel ty	pe w		ine ii
or e	ver	y swi	itcho	ver pr		-		ted f	uel ty	/pe w		ine ii
t	MIC Cal tem ype of el Data ser Defi	MIC Cal tem Ppe of Fuel el Database : ser Defined : Gas_Natur	MIC I FLEXI Cal PID tem rpe of Fuel el Database : ser Defined : Current Fuel Gas_NaturalGas	MIC I FLEXI I Cal PID tem rpe of Fuel el Database : Natural ser Defined : Set Use Current Fuel GCV Gas_NaturalGas 45980	MIC I FLEXI I TREND Cal PID Boiler Dat tem Product rpe of Fuel el Database : NaturalGas ser Defined : Set User Defined Current Fuel GCV NCV Gas_NaturalGas 45980 35308	MIC I FLEXI I TRENDS I Cal PID Boiler Data tem Product rpe of Fuel Efficien el Database : NaturalGas • ser Defined : Set User Defined Current Fuel GCV NCV KGR Gas_NaturalGas 45980 35308 0.35 ©Copyr	MIC I FLEXI I TRENDS I ALAR Cal PID Boiler Data Fuel Fuel Type tem PID Product Alarn Lim rpe of Fuel Efficiency Calcula el Database : NaturalGas Image: Calcula ser Defined : Set User Defined Set User Defined Current Fuel GCV NCV KGR Knett Gas_NaturalGas 45980 35308 0.35 Save Save	MIC I FLEXI I TRENDS I ALARMS Cal PID Boiler Data Fuel Type I tem I Product Alarm Limits I rpe of Fuel Efficiency Calculations are el Database : NaturalGas I ser Defined : Set User Defined Current Fuel GCV NCV KGR Knet K Gas_NaturalGas 45980 35308 0.35 0.39 11.90	MIC I FLEXI I TRENDS I ALARMS I SET Cal PID Boiler Data Fuel Type Blowdo tem I Product Alarm Limits I rpe of Fuel Efficiency Calculations are on GCV I Blowdo el Database : NaturalGas I Efficiency Calculations are on GCV er Defined : Set User Defined I I Image: Carrent Fuel Image: Carrent Fuel Current Fuel GCV NCV KGR Knet K ImH ₂ O Gas_NaturalGas 45980 35308 0.35 0.39 1.90 1.500 ©Copyright Forbes Marshall Pvt ted	MIC I FLEXI I TRENDS I ALARMS I SETTINGS Cal PID Boiler Data Fuel Type Blowdown I tem I Product Alarm Limits I Image: Comparison of the comparison	MIC I FLEXI I TRENDS I ALARMS I SETTINGS Cal PID Boiler Data Fuel Type Blowdown Limits tem Product Alarm Limits Imits Imits rpe of Fuel Efficiency Calculations are on GCV basis Imits Imits el Database : NaturalGas Imits Imits Imits Imits Imits ser Defined : Set User Defined Imits Imits Imits Imits Imits Imits Current Fuel GCV NCV KGR Knet K Imits Imits Imits Gas_NaturalGas 45980 35308 0.35 0.39 11.90 1.500 24.400 0.800 Selected Eucl: Gr ©Copyright Forbes Manhall Pvt txt Selected Eucl: Gr Selected Eucl: Gr	MIC FLEXI I TRENDS I ALARMS J SETTINGS Cal PID Boiler Data Fuel Type Blowdown Limits tem Product Alarm Limits

4.2.5 The Blowdown Screen:

ffiMax												
MIMIC	I FLEXI	I.	TRENDS	I.	ALARMS	I	SETTIN	GS				
O ₂ Cal	PID		Boiler Data	F	uel Type		Blowdown		Limits		Range	
System			Product	Ala	irm Limits							
Blowdow	wn Control Mo	de: Man	ual							BOIL	ER ON	
	Current TDS (ppm)	3000		Time betwe	een P	urge Cycles (i	mins)	30			
	TDS Constant	К	7.03 In	walid K	Purge Time	e (sec)		30			
	TDS Resistan	ce (ohm)	400		Blowdown	Time	(sec)		20			
	TDS Setpoint	(ppm)	3500		TDS Calibra	ated \	/alue (ppm)		3000			
	Blowdown Te	mp. (°C)	180.0		TDS Deadb	band	(ppm)		50			
			Purge	Aut			1. F.		30			
										31/12/	/2019 - 15:3	33
			(Copyright	Forbes Marshall F	vt Ltd					E4KDual F	ue

- To calibrate the TDS sensor as well adjustment for purge time.

Calibration of TDS Sensor:

- 1. Select Manual Mode.
- 2. Press Purge & collect the sample of blowdown water.
- 3. Ensure that there is no flashing.
- 4. Do not purge again after taking sample till calibration data is entered.
- 5. Take a sample of the blowdown water in a beaker.
- 6. Measure its TDS with a calibrated and certified meter or the Lab test value of blowdown water.

Page | 66

- 7. Enter the TDS value in TDS calibration value.
- 8. Now Press **Purge** button & while the purge is ON, press **Calibrate** button.
- 9. The system is now calibrated to the actual TDS Value.
- 10. Now select Auto mode which will blowdown after select interval.

	MIMIC	T	FLEXI	Т	TRENDS		ALA	RMS	I	SETT	INGS			
	O₂ Cal		PID		Boiler Data		Fuel Ty	pe		Blowdow	/n	Limits		Range
	System				Product		Alarm Li	mits						
	Blowdo	wn Co	ontrol Mod	le: Aut	to P	urge N	1ode On						BOIL	ER ON
		Cu	rrent TDS (p	pm)	3000		Tim	ne betwe	en Pi	urge Cycle	s (mins)	30		
		TD	S Constant K		7.03 I	nvalid	K Pur	ge Time	(sec))		30		
		TD	S Resistance	(ohm)	400		Blo	wdown	Time	(sec)		20		
		TD	S Setpoint (p	opm)	3500		TDS	6 Calibra	ted \	/alue (ppm	1)	3000		
		Blo	owdown Tem	p. (°C)	180.6		TD:	S Deadb	and (ppm)		50		
														/2019 - 12:22
						© Copy	right Forbes I	Marshall P	vt Ltd		Selecte	ed Fuel: Gas		E4KDual Fu
	lote: I	Blov	wdow		inactiv Irain di							F, so b	oiler	'won'
N														

4.2.6 Limits Screen:

• To set Min & Max limits for the calculated parameters With this page, we can configure the minimum & maximum display value limits for all the calculated parameters.

MIMIC	T	FLEXI	I.	TRENDS I AI	LARMS	SETTINGS		2 FOR MARS
O₂ Cal		PID		Boiler Data Fuel	Type	Blowdown	Limits	Range
System				Product Alarm	Limits			
				Parameter	Min.	Мах.		
				Steam Pr. (bar g)	0.0	40.0		
				S : F Ratio	0.0	20.0		
				Boiler Efficiency (%)	0.0	100.0		
				TDS Value (ppm)	0	10000		
				Stack Oxygen (%)	4.1	20.9		
				Stack Loss (%)	0.0	100.0		
				Enthalpy Loss (%)	0.0	100.0		
				Radiation Loss (%)	0.0	100.0		
				Blowdown Loss (%)	0.0	100.0		
							3	1/12/2019 - 12:

Page 68

4.2.7 Range Screen:

• For setting minimum and the maximum ranges of the standard field mounted sensors.

MIMIC I	FLEXI I	TREN	DS I	ALAR	MS I	SETTINGS	
O2 Cal	PID	Boiler D	ata	Fuel Type	e B	owdown	Limits Range
System		Produ	ct /	Alarm Lim	its		Standard
Parameter	Min. Count	Max. Count	Min. Range	Max. Range	Actual Count	Actual Value	
Ambient Temp	10486	52428	0	0	0	0.0 °C	
Feed Water Temp	10486	52428	0	0	0	0 °C	
Stack Temp	10486	52428	0	0	0	0 °C	
Mass Steam Flow	10486	52428	0	0	0	0 kg / h	
Oil Flow	10486	52428	0	0	10473	0 Lit/h	
Steam Temp	10486	52428	0.00	0.00	0	0.00 °C	
Firing F/B	10486	52428	0.00	0.00	0	0.00%	
Drum Level	10486	52428	0	0	0	0%	
Gas Flow	10486	52428	0	0	0	0 Nm3/h	Next

MIMIC I	FLEXI I	TRENDS I	ALARMS	SETTINGS	
O ₂ Cal	PID	Boiler Data	Fuel Type	Blowdown Li	mits Range
System		Product	Alarm Limits		
Parameter	Min. Count	Max. Min. Count Range	Max. Actua e Range Cour		
Stack Oxygen	10486	52428 0.00	0.00 0	4.10%	
TDS	10486	52428 0	0 0	0 ppm	
Blowdown Temp	10486	52428 0.0	0.0 0	0.0 °C	
					Previous 31/12/2019 - 13:52:5

Operating EffiMAX

	PID Min. Count 10486 10486 10486	Count R 52428 2 52428 2		Fuel Type Alarm Limits Max. Range 10000 999 6000		Actual Value 2000 kg/h 30 mg/Nm3	Limits	Rang
Flexi Parameter Steam Flow 1 SPM Feedwater Hardness	Min. Count 10486 10486 10486	Max. Count R 52428 2 52428 2	Min. ange 2000 30	Max. Range 10000 999	Actual Count 0	Value 2000 kg/h		Flexi
Steam Flow 1 SPM Feedwater Hardness	Count 10486 10486 10486	Count R 52428 2 52428 2	ange 2000 30	Range 10000 999	Count 0	Value 2000 kg/h		
SPM Feedwater Hardness	10486 10486	52428	30	999				
Feedwater Hardness	10486				0	30 mg/Nm3		
		52428	150	6000				
Feedwater Flow	10486			0000	0	150 ppm		
		52428 2	2200	15000	0	2200 kg/h		
								31/12/2019 - 1:

Range Settings for Flexi parameters:

Above fig indicates default ranges configured for the Field sensors.

- In addition to the sensor ranges, actual count received from the I/O Module as well as its actual value is displayed.
- This screen would be very useful while commissioning the unit as it shows the Raw as well as scaled values of the sensors.
- The list of parameters changes with the type of product selected.
- The range of Stack Oxygen is normally -10.0mV to 125.00mV in case direct oxygen is measured.
- In case if Stack Oxygen is measured using dedicated electronics or any other analyzer, the range should be 0.0 to 20.9%.

Operating EffiMAX

4.2.8 System Screen:

EffiMax		
MIMIC I FLEXI I	TRENDS I ALARMS I SETTINGS	Opr
O2 Cal PID	Boiler Data Fuel Type Blowdown Li	mits Range
System	Product Alarm Limits	
	Date: 31/12/2019 Time: 12:23:22 HMI IP: 192.168.1.110 Brightness (0 - 255): 255	
Connection Details:	Load Testing Values	
OA IA	DI DO	
		31/12/2019 - 12:23:22
V	© Copyright Forbes Marshall Pvt Ltd Selected Fuel	: Gas E4KDual Fuel

- To set additional features like Date, Time, IP Address, Brightness level.
- In addition user can view Connection Details and its status

EffiMax											
MIMIC	1	FLEXI	1	TRENDS		I ALARMS		SETTINGS			C
O₂ Cal		PID		Boiler Data		Fuel Type		Blowdown	Limits		Range
System				Product		Alarm Limits					
		AITB	1					AI	TB 2		
No.		Parameter	ſS	Counts			No	. Parame	eters	Co	unts
AIN1	Amb.	Temp.		0			AIN	1 Stack O2			0
AIN2	Steam	n Temp./ Ste	am Pr.	0			AIN	2 O2 Probe Tem	p.		0
AIN3	Stack	Temp.		0			AIN	3 Drum Level			0
AIN4	Feedw	vater Temp.		0			AIN	4 ID Pr. /Firing F	В		0
AIN5	Steam	n Flow		0			AIN	5 Sup. Steam Pr.	/ NC		0
AIN6	Feede	er1/Gas/Oil		0			AIN	6 Feeder2 /DF_G	as Flow		0
AIN7	TDS			10489			AIN	7 Feeder3			0
AIN8	Blowd	lown Temp		0			AIN	8 Feeder4			0
System											Next
										18/12/	2019 - 10:01:(
	_			C	Сору	right Forbes Marshal	Pvt Ltd			_	E4KOil
es Mars	hal	1							Р	ag	e 71
										0	•

Operating EffiMAX

fiMax										
MIMIC	I FLEXI	I.	TRENDS	- I	ALARMS	1	SETTINGS			c
O₂ Cal	PID	В	oiler Data		Fuel Type	B	lowdown	Limits	Range	
System			Product	/	Alarm Limits					
	AI	ГВ 3					AI	TB 4		
No.	Parame	ters	Counts		I	No.	Parame	eters	Counts	
AIN1	Feeder5		0			AIN1	Flexi Input 7		0	
AIN2	Feeder6		0			AIN2	Flexi Input 8		0	
AIN3	Flexi Input 1		0			AIN3	Flexi Input 9		0	
AIN4	Flexi Input 2		0			AIN4	Flexi Input 10		0	
AIN5	Flexi Input 3		0			AIN5	Flexi Input 11		0	
AIN6	Flexi Input 4		0			AIN6	Flexi Input 12		0	
AIN7	Flexi Input 5		0			AIN7	NC		0	
AIN8	Flexi Input 6		0			AIN8	NC		0	
Previous									AO	
									31/12/2019 - 15:36	_
			©c	opyric	ght Forbes Marshal	Pvt Ltd	Selected	Fuel: Gas	E4KDual Fue	ēl

MIMIC I	FLEXI	I TREN	IDS I A	LARMS I	SETTINGS		
O2 Cal	PID	Boiler I	Data Fue	Туре	Blowdown	Limits	Range
System		Produ	uct Alarm	Limits			
	No.	AOTB 1 Parameters	Counts	No. F	AOTB 2 Parameters C	ounts	
		O2_RxTx	18714	AOUT1 D		10486	
	AOUT2	TDS_RxTx	23069	AOUT2 N	С	10486	
	AOUT3	O2PID_OP	10486	AOUT3 N	С	10486	
	AOUT4	FD1_OP	10486	AOUT4 N	С	10486	
AI							DI
						3	1/12/2019 - 15:37
			©Copyright For	oes Marshall Pvt Ltd	Select	ed Fuel: Gas	E4KDual Fue

Operating EffiMAX

fiMax									
MIMIC	I FLEX	a i	TRENDS	1	ALARMS	5 1	SETTINGS		(
O₂ Cal	PID		Boiler Data		Fuel Type	B	owdown	Limits	Range
System			Product		Alarm Limits				
	[DITB 1						DITB 1	
No.	Paran	neters	Status		I	No.	Para	meters	Status
DIP1	Boiler ON/OI	FF				DIP9	NC		
DIP2	Oil Flow Sele	ction				DIP10	NC		
DIP3	Gas Flow Sel	ection				DIP11	NC		
DIP4	Superheated	Bldn Valv	re I/P			DIP12	NC		
DIP5	Oil Pulse I/P					DIP13	NC		
DIP6	NC					DIP14	NC		
DIP7	NC					DIP15	NC		
DIP8	NC					DIP16	NC		
AO									DO
			6						31/12/2019 - 15:37:
			C	Copyrig	ght Forbes Marshal	l Pvt Ltd	Select	ed Fuel: Gas	E4KDual Fuel

MIMIC		FLEXI	Т	TRENDS	1	ALARMS	5 1	SETTIN	IGS		i	
O₂ Cal		PID		Boiler Data		Fuel Type		owdown		Limits		Range
System				Product	Ì	Alarm Limits	1					
-		DOTB	1						DO	TB 1		
No.		Parameter	s	Status			No.		Parame	ters	Sta	atus
DO1	Blowde	own valve					DO9	NC				
DO2	NC						DO10	NC				
DO3	NC						D011	NC				
DO4	NC						DO12	NC				
DO5	NC						DO13	NC				
DO6	NC						DO14	NC				
	NC						DO15	NC				
DO8	NC						DO16	NC				
DI												
											31/12/	2019 - 15:37:4
9				©c	opyr	ight Forbes Marshal	l Pvt Ltd	S	elected	Fuel: Gas		E4KDual Fuel

4.2.9 Trim Screen Oil / Gas:

Trim screen is used to configure the parameters for O2 trim control. The firing table needs to be filled in to define the desired oxygen levels at different load conditions. This table can be opened by clicking on the Show button in front of firing table. Range of firing rate should be entered on this page. The trim control logic will consider these values as a window under which O2 will be controlled.

Stack O₂: This is the process variable which needs to be controlled at all firing loads.

O2 SP: This is the Set point for controlling O_2 at different firing rates. This set point is derived from the firing table.

Firing Rate: This is the actual firing feedback received from the burner. This indicates the present firing load of the burner based on which oxygen set-point is varied and PID minimum values are determined to ensure safe minimum outputs are given at all loads.

The burner can give firing feedback in either 4-20 mA standard or a potentiometer with gear mechanism needs to be mounted on burner to get the actual firing load from burner.

Firing Table: This table is used to feed the Set points & FAN OP as per the load, so as the load changes set points & OP's are derived from these tables.

Manual Output: This is the entered manual output. Based on the selection of Manual mode, this fixed output will be given.

Ramped FD Output: This is the final output that will be given to FD fan VFD whether in auto or manual mode with ramp rate as entered in FD Ramp Time (%/sec).

Operating EffiMAX

EffiMax			
MIMIC I FLEXI	I TRENDS I A	ALARMS I SETTINGS	Opr
O ₂ Cal PID	Boiler Data Fue	el Type Blowdown	Limits Range
System	Product Alarr	n Limits	O2 Trim Oil
FD Fan Control_Oil		Boiler OFF	
Stack O ₂ (%) :	20.90	P - Gain :	1.0
O ₂ SP (%) :	0.00	I - Time :	10.0
Firing Rate(%) :	20.0	FD Ramp Time (%/sec)	2
Firing Table :	Show	FD Startup Time (sec) :	10
		FD Start Air (%) :	20
Ramped FD Output :	0.0 (0.0)	FD FAN LoLimit (%) :	0.0
		FD FAN HiLimit (%) :	80.0
	Mode (A /M): Mar	nual	
			31/12/2019 - 12:17:15
	© Copyright Fo	rbes Marshall Pvt Ltd Selecte	d Fuel: Gas E4KDual Fuel

fiMax			
MIMIC I FLEXI	I TRENDS I A	LARMS I SETTINGS	
O ₂ Cal PID	Boiler Data Fue	l Type Blowdown	Limits Range
System	Product Alarm	n Limits	O2 Trim Gas
FD Fan Control_Gas		Boiler OFF	
Stack O ₂ (%) :	20.90	P - Gain :	1.0
O ₂ SP (%) :	0.00	I - Time :	10.0
Firing Rate(%) :	20.0	FD Ramp Time (%/sec)	2
Firing Table :	Show	FD Startup Time (sec) :	10
		FD Start Air (%) :	20
Ramped FD Output :	0.0 (0.0)	FD FAN LoLimit (%) :	0.0
		FD FAN HiLimit (%) :	80.0
	Mode (A /M): Man	ual	
			31/12/2019 - 12:1
	©Copyright For	bes Marshall Pvt Ltd Selected	d Fuel: Gas E4KDual Fu

Forbes Marshall

Page | 75

Operating EffiMAX

Proportional Gain (P): Proportional value in the PID controller used to calculate the Output. This gain (P) should be tuned based on the response of the O_2 probe & the boiler combustion.

Repeats / Min (I): Integral Value in the PID controller used to calculate the Output. This indicates the rate of output value updating in a minute. For ex. If I is set as 10, then 60sec / 10 = 6. This means after every 6 sec output is re-calculated to control the damper / motor.

Boiler Start Air (%) and Boiler Startup Time (Sec): These two parameters are interlinked. Whenever burner on feedback is received every time burner ignition happens, an entered 'Boiler Start Air (%) 'Output will be given for 'entered 'Boiler Startup Time (Sec)'.

This is to ensure pre-purging is completed before actual trimming begins.

FD Ramp Time (%/sec): The actual output will vary according to these entered values. For e.g. if value entered as 2 the actual output will vary at the rate of 2% per sec. This is to ensure that there is bump less transfer of output when shifted from auto to manual or manual to auto mode.

FD Fan LoLimit (%): This value is derived from firing table, this set the low limit to FD fan.

This means if the setpoint is lower than actual O2%, controller will try to reduce the O2 level by reducing the FD fan speed till FD Fan LoLimit, even though O2 level is higher than setpoint it won't go below this settings for safety concern.

FD Fan HiLimit (%): This value is settable from this screen only; this value limits the maximum speed of the FD fan.

This means if the setpoint is higher than actual O2%, controller will try to increase the O2 level by increasing the FD fan speed till FD Fan

HiLimit, even though O2 level is lower than setpoint it won't go beyond this settings for safety concern.

Firing Table:

This table is used to feed the Set points & FAN OP as per the load, so as the load changes set points & OP's are derived from these tables.

	Firing F/B	FD FAN LoLimit	O2 SP	Firing Rate	Stack O ₂ SP	
	0	54.0	2.0	20.0 %	0.00 %	
	0	56.0	2.4			
	0	58.0	2.6	FD FAN LoLimit	Stack O ₂	
	0	60.0	3.0	0.0 %	20.90 %	
	0	62.0	4.0			
	0	64.0	5.0	FD FAN		
	0	66.0	5.5	80.	.0%	
	0	68.0	6.0			
	0	70.0	7.0			
	0	70.0	8.0			
					31/12/2	019 - 12
	as	(© Copyright Forbes Mar	shall Pvt Ltd Selected		4KDual
					Fuel: Gas E	4KDual
	as Firing F/B	FD FAN LoLimit	O2 SP	Firing Rate	Fuel: Gas	4KDual
	Firing F/B	FD FAN LoLimit	O2 SP		Fuel: Gas E	4KDual
	Firing F/B	FD FAN LoLimit	O2 SP 2.0 2.4	Firing Rate	Fuel: Gas	4KDual
	Firing F/B	FD FAN LoLimit 54.0 56.0 58.0	O2 SP 2.0 2.4 2.6	Firing Rate 20.0% FD FAN LoLimit	Fuel: Gas E Stack O2 SP 0.00 % Stack O2	4KDual I
	Firing F/B	FD FAN LoLimit 54.0 56.0 58.0 60.0	O2 SP 2.0 2.4 2.6 3.0	Firing Rate	Fuel: Gas Stack O2 SP 0.00 %	4KDual I
	Firing F/B	FD FAN LoLimit 54.0 56.0 58.0 60.0 62.0	O2 SP 2.0 2.4 2.6 3.0 4.0	Firing Rate 20.0% FD FAN LoLimit 0.0%	Fuel: Gas E Stack O2 SP 0.00 % Stack O2	4KDual
	Firing F/B	FD FAN LoLimit 54.0 56.0 58.0 60.0 62.0 64.0	O2 SP 2.0 2.4 2.6 3.0 4.0 5.0	Firing Rate 20.0% FD FAN LoLimit 0.0% FD FAN	Fuel: Gas E Stack O2 SP 0.00 % Stack O2 20.90 %	4KDual f
	Firing F/B	FD FAN LoLimit 54.0 56.0 58.0 60.0 62.0 64.0 66.0	O2 SP 2.0 2.4 2.6 3.0 4.0	Firing Rate 20.0% FD FAN LoLimit 0.0% FD FAN	Stack O2 SP 0.00 % Stack O2 20.90 %	4KDual f
	Firing F/B	FD FAN LoLimit 54.0 56.0 58.0 60.0 62.0 64.0	O2 SP 2.0 2.4 2.6 3.0 4.0 5.0 5.5	Firing Rate 20.0% FD FAN LoLimit 0.0% FD FAN	Fuel: Gas E Stack O2 SP 0.00 % Stack O2 20.90 %	4KDual F
	Firing F/B	FD FAN LoLimit 54.0 56.0 58.0 60.0 62.0 64.0 66.0 68.0	O2 SP 2.0 2.4 2.6 3.0 4.0 5.0 5.5 6.0	Firing Rate 20.0% FD FAN LoLimit 0.0% FD FAN	Fuel: Gas E Stack O2 SP 0.00 % Stack O2 20.90 %	4KDual F
ax Control_G	Firing F/B	FD FAN LoLimit 54.0 56.0 58.0 60.0 62.0 64.0 66.0 68.0 70.0	O2 SP 2.0 2.4 2.6 3.0 4.0 5.0 5.5 6.0 7.0	Firing Rate 20.0% FD FAN LoLimit 0.0% FD FAN	Fuel: Gas E Stack O2 SP 0.00 % Stack O2 20.90 %	Back
	Firing F/B	FD FAN LoLimit 54.0 56.0 58.0 60.0 62.0 64.0 66.0 68.0 70.0 70.0	O2 SP 2.0 2.4 2.6 3.0 4.0 5.0 5.5 6.0 7.0 8.0	Firing Rate 20.0% FD FAN LoLimit 0.0% FD FAN	Fuel: Gas E Stack O2 SP 0.00 % Stack O2 20.90 % Hillimit .0 %	

Operating EffiMAX

4.2.10 Drum Level:

MIMIC	FLEXI I	TRENDS	I ALARMS	I SETTINGS		
O ₂ Cal	PID	Boiler Data	Fuel Type	Blowdown	Limits	Range
System		Product	Alarm Limits		Dr	um Level 💽
Drum Level Cont	rol Output	is overwritten by M	anual Mode			
Drum Water Level (%	6): 75.0			Drum Level Co	ntrol Trend	
Set Point (%) :	0.0	100.0	-			
P - Gain :	1.00	80.0	-			
I - Time :	5.00		=			
D Gain :	0.00	60.0	· =			
O/P min :	0.0	40.0	-			
O/P max :	100.0		Ξ			
Manual O/P :	0.0	20.0	Ξ			
Action (F/R) :	Reverse	0.0	12:14	12:16	12:17	12:19
Mode (A /M):	Auto			PV: SP:	O/P:	1
					21.4	.2/2019 - 12:19

Drum Water Level: The Drum Water Level can be set 0-100%.

Setpoint: Selection of Set point is based on the SP mode selection. This is the value of O_2 set by user or derived from firing table for a particular firing rate.

Proportional Gain (P): Proportional value in the PID controller used to calculate the Output. This gain (P) should be tuned based on the response of the O_2 probe & the boiler combustion.

Repeats / Min (I): Integral Value in the PID controller used to calculate the Output. This indicates the rate of output value updation in a minute. For ex. If I is set as 10, then 60sec / 10 = 6. This means after every 6 sec output is re-calculated to control the damper / motor.

Derivative Gain (D): Derivative value in the PID controller used to calculate the Output.

PID OP Min: This value is used to limit the PID output in Auto mode, so that output should not go below the minimum operating value.

PID OP Max: This value is used to limit the PID output in Auto mode, so that output should not go above the maximum operating value.

Manual Output: In manual mode user can set the FD Fan output as required by user.

Action: Forward or Reverse action can set.

Mode: This helps to switch from auto to manual mode and vice versa. Manual Mode is used to bypass the control action and user can enter the Output as required from 0 - 100%.

Operating EffiMAX

4.2.11 Product Screen:

This screen sets the type of effiMAX variant, Input steam flow type, & many other crucial Product configurations as shown below:

EffiMax					
MIMIC I	FLEXI I 1	rrends i Al	ARMS I SETT	TINGS	Opr
O2 Cal	PID Bo	oiler Data Fuel	Type Blowdov	wn Limits	Range
System		Product Alarm	Limits	So	ftware Version 1.0.0
Product Name	EffiMax 4000 💌	Efficiency Calculation	GCV -	TDS Sensor Type	BBCS -
Fuel Variant	Dual Fuel	Efficiency Type	Indirect 🔹	Input TDS Signal Type	Resistance 💌
Input Steam Flow Type	Mass	Drum Level Control	Yes	TDS Measurement Type	Purge Mode 🔹
Boiler On / Off Type	Fuel Flow Cutol	Input Oil Flow Type	Pulse 💌	TDS Resistance Range	10 to 400 💌
Density Calculation Using	Steam Temp.	Oil Flow Type	Mass Flow (kg/	Flexi Input	Yes
Input O₂ Signal Type	mA 💌	Gas Flow Type	Mass Flow (kg/ 💌	No of Flexi Inputs	4
Steam Flow Unit	Kg/h				
	Flex	i Parameter Settings	Restore to Defau	lt	Next
				3.	1/12/2019 - 12:24:35
		©Copyright Forbe	es Marshall Pvt Ltd	Selected Fuel: Gas	E4KDual Fuel

• Flexi Parameters Settings:

This screen is to configure input name, type and unit of the additional parameters.

Parameter Name: To configure the name of parameter, just enter blank field under Flexi parameter, keypad will pop-up to enter the name of parameter.

Parameter Type: Depending on the averaging or totalization requirement, select 'Avg.' or 'Total' option.

Units: Respective parameters unit need to be entered through popup keyboard.

Enable: Once check box is selected, respective parameter and its total value will be displayed on Flexi parameters page.

МАХ	Operating EffiM/
EffiMax	
MIMIC I FLEXI I TRENDS I ALARMS I <mark>SETTINGS</mark>	
O2 Cal PID Boiler Data Fuel Type Blowdown	Limits Range
System Product Alarm Limits	
Analog Flexi Parameter Average Unit Enable Analog Flexi Parameter Input Flexi Parameter	Average / Total Unit Enable
A/I 1 Steam Flow 1 TTL 💌 kg/h 🔽 Steam Total 1 kg	
A/1 2 5PM AVG M mg/Nm3	
A/I 3 Feedwater Hardness AVG 💌 ppm	
A/14 Feedwater Flow	
Feedwater Total kg	
	31/12/2019 - 12:25:30
©Copyright Forbes Marshall Pvt Ltd Select	ted Fuel: Gas E4KDual Fuel

4.2.12 Alarms Screen:

This page is used to set the alarm levels for the parameters configured in the effiMAX. Parameter Name is mentioned and user is supposed to enter Low alarm value below which alarm will be generated of that parameter. Also, enter High alarm value above which alarm will be generated.

MIMIC	1	FLEXI	TREND	15	ALAR	IVIS	SETTIN	IGS		C
O_2 Cal		PID	Boiler Da	ta	Fuel Type	e	Blowdown		Limits	Range
System			Produc	t	Alarm Lin	nits				
	Parar	neter		Low Enable	Low Setpoint	High Enable	High Setpoint	Hysteresi	s Actual Value	
	Stack	: Temp.		~	150.0	-	400.0	0.0	152.0	
	Feed	Water Temp.		<	57.0	-	100.0	0.0	56.0	
	O ₂ H	eater Temp.		~	0.0	-	300.0	0.0	798.0	
	Stean	n Temp.		<	30.0		0.0	0.0	180.0	
	Ambi	ient Temp.			0.0		0.0	0.0	34.0	
	Blow	downTemp.			0.0		0.0	0.0	180.6	
	Stear	n Pr.			0.0		0.0	0.0	9.02	
										Next
									31/1	12/2019 - 12:24:
				©Copy	right Forbes Ma	rshall Pvt Lto	d S	elected Fi	uel: Gas	E4KDual Fuel

SECTION 5: BLOWDOWN SYSTEM

5.1 Introduction

STANDALONE TDS MEASUREMENT SYSTEM:

• The standalone TDS measurement system measures the total dissolved solids of the boiler water & helps the user to keep the records of the same. This sensor is installed on the blowdown line.

• For installation of TDS sensor please refer 'Installation diagram of TDS sensor' in Section 11.

BBCS:

The **Boiler Blowdown Control System (BBCS)** system is designed to maintain boiler water total dissolved solids (TDS) within a band as indicated by the boiler manufacturer, water treatment specialists or in standards for TDS control.

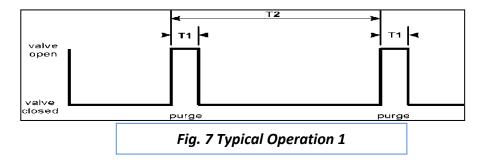
• It maintains the TDS of drum water specified by the boiler attendant.

5.2 Operating Principle

The BBCS system periodically opens the Blowdown valve automatically and purges the water.

The BBCS sensor, mounted in the sensor chamber, measures the TDS of the Blowdown water.

This measured value is compared with the user-fed set point on the display in a following manner:

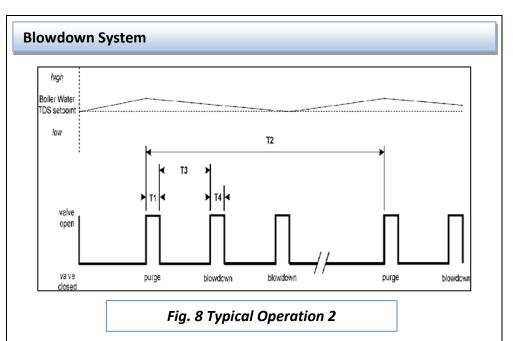

Page | 82

1. If the measured value is lower than the set point, the Blowdown valve closes at the end of the purge time and remains closed until the next purge.

2. If the measured value is higher than the set point, the controller continues the Blowdown cycle until the measured value drops below the set point.

Typical Operations:

Measured TDS lower than the set point



T1: Initial purge time: Standard setting is 10 seconds. It can be varied between 1 to 60 seconds in the computation unit.

T2: Time between purges: Default setting is 30 minutes & can be programmed on the analyzer as per required in the application.

T3: Time between blowdown: Standard setting is 20 seconds. This is useful in cases where the expected blowdown is less than 800 kg/h. It will make the blowdown cycles intermittent.

T4: Blowdown time: Default setting is 10 seconds. It can be varied from 1 second to up to 60 seconds on the computation unit.

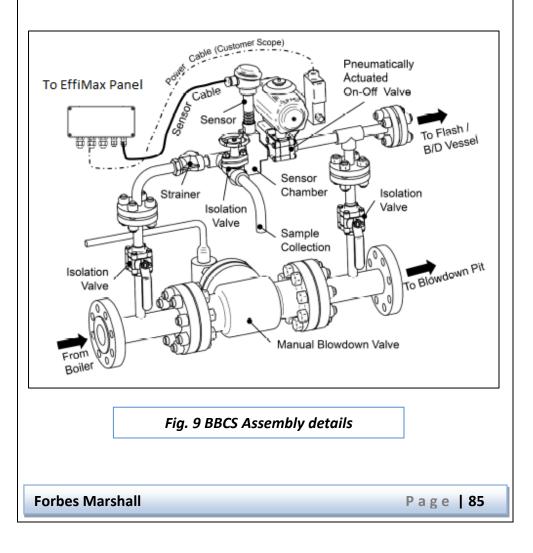
***** TDS being controlled near set point:

A conductivity sensor measures the boiler water TDS during the purge cycle. The resistance of this sensor changes with the change in conductivity. This is sensed by the EffiMAX Signal conditioning unit and the actual TDS value is the computed and displayed by the Display unit. This is then compared with the set-point in the blowdown controller and action is taken accordingly.

Features and Benefits:

• Reduced operating costs (less feed water consumption; chemical treatment and higher heating efficiency)

• Reduced maintenance and repair costs (minimized carryover and deposits)


- Cleaner and more efficient steam
- Minimize energy loss from boiler blowdown
- Compact and complete boiler blowdown control solution
- · High quality components requiring low maintenance

Page 84

5.3 Assembly of the system

A typical installation is shown in the Boiler Blowdown Control System assembly drawing below. Assemble the system using the gaskets supplied between flanges. Note the following points.

BBCS Assembly diagram:

Blowdown System

Core components of BBCS

• High Temperature Conductivity Sensor (HTCS) with built-in

Temperature Sensor.(Cell Constant K=1)

- Sensor Chamber
- 4-Core Shielded Cable for BBCS Sensor
- Boiler Blowdown Control Piping

System comprises of following -

- 1. Isolation Valves,
- 2. 'Y' Strainer,
- 3. Sample Collection Point,
- 4. Sensor Chamber,
- 5. Pneumatically Operated On-off Blowdown Valve
- 6. Manual Blowdown Valve

Pressure and Temperature Limits:

1. Mechanical:

- Maximum Operating Pressure: 31 Kg/cm2(g)
- Maximum Operating Temperature: 238 °C
- Cold Hydraulic Test Pressure: 47 kg/cm2(g)
- Minimum Operating Temperature: 0 °C
- Instrument Air Supply: 4 to 6 Kg/cm2(g)

2. Measurement:

- TDS Range: 500 to 10000 ppm, Resolution: 10 ppm
- Temperature Range: 0 to 250 °C, Resolution: 0.1 °C

Page | 86

Boiler Bottom Blowdown Line Connections

All connecting pipe work should always be free from external stresses & adequately supported.

Forbes Marshall BBCS unit must not be operated above the maximum pressure & temperature of boiler blowdown water indicated on system general arrangement drawing / product nameplate.

Connect the Inlet & Outlet boiler blowdown line as indicated in respective general arrangement drawing for to BBCS unit.

BBCS Sensor Installation

Fit the sensor chamber in a horizontal pipeline with suitable isolation valves to facilitate inspection/cleaning of the sensors. Process flow must be in the direction of arrow marked on sensor chamber. **The sensor must be fitted in vertical direction with sensor head upwards**. The sensor is supplied with a gasket for sealing between sensor & sensor chamber.

Do not install the sensor outdoors without additional weather protection

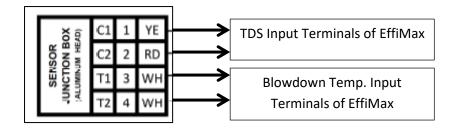
Do not install the sensor in inverted/horizontal position

Fit the sensor to the sensor chamber by gripping it across flat provided on sensor for spanner only. Do not apply torque to sensor aluminium head or extension piece with cooling fins to fit sensor to sensor chamber.

Ensure that sensor cable is not exposed to a temperature greater than 120°C

Air Supply

Connect instrument air supply at 4 to 6 kg/cm2(g) to Air Filter Regulator mounted on On-off blowdown valve.


Blowdown System

Signal Cable Connections:

It is mandatory to use Forbes Marshall BBCS Sensor Cable only, supplied along with BBCS unit to connect the BBCS Sensor to EffiMax.

Length of BBCS Sensor cable is limited to 5 meters. In special case it can be 30 meters max. Maintain distance between the BBCS sensor & EffiMax accordingly.

Forbes Marshall BBCS sensor cable available in Length 5 meter as Standard & 30 meter as optional. Sensor cable length must be specified in Purchase order.

YE: Yellow

RD: Red

WH: White

C1, C2: Conductivity Input

T1, T2: Blowdown Temperature Input.

Page 88

5.4 Commissioning the System

Ensure that the downstream of blowdown valve is fully open.

After mechanical and electrical installation, the system must be commissioned as follows:

1) Testing for leaks:

Open the two ball valves and with the boiler under pressure open the blowdown valve for the purge time T1 by briefly pressing the "purge" button on the controller.

Blowdown should be discharged to the blowdown vessel for approximately 30 seconds (the standard setting). Check that the pipework becomes hot (indicating flow) and that there are no leaks.

2) Setting the purge time T1:

For most small boilers the standard purge time of 30 seconds is sufficient to ensure that hot blowdown at boiler temperature reaches the sensor so that the controller can measure its true TDS.

Where there is rather long or large bore pipe-work upstream of the sensor, a longer purge time may be required.

The necessary purge time may be programmed through software (as shown below).

Starting with the blowdown pipe-work reasonably cold (e.g. after standing for at least 15 minutes) press and hold the "purge" button until the display reaches its highest steady reading. The time taken to reach the highest reading is the minimum required purge time.

If the required purge time is longer than 30 seconds, set the required purge time as was shown below. After adjustment the purge time can be checked by briefly pressing the "purge" button, when the blowdown valve will open for the set purge time. Make adjustments as necessary.

Blowdown System

3) Setting the blowdown time T3:

For most process boilers, the standard time between blow-downs (T3) of 40 seconds is satisfactory. For very high blowdown rates, T3 may be set to zero so that blowdown is continuous. It is important that the required blowdown rate is not more than the maximum rate possible through the valve; otherwise the valve will remain open and still not be able to regulate TDS. The maximum blowdown rates at various boiler pressures are as follows:

Boiler Pressures	Blowdown rates (kg/h)					
Boller Pressures	T3 = 20 seconds	T3 = 0 seconds				
5.5	333	1000				
10.5	900	2700				
17.5	1233	3700				
21.5	1500	4500				
31.5	1900	5500				

4) Setting the time between purges (T2):

Time T2 should be set as specified by the boiler manufacturer or as found out by experience of the boiler operator. EffiMAX uses a default setting of 30 minutes.

5) Setting the blowdown time (T4):

This should be set on the basis of the operating pressure of the boiler and on the distance of the sensor from the boiler. The default value of 20 seconds is generally sufficient and need not be disturbed. It is important to remember that a larger T4 will mean more water flowing out of the boiler. This can result in triggering the low water alarm of the boiler.

5.5 Trouble Shooting

In case of problems, refer to the following points:

1) The boiler water TDS continue to rise above the set point although the 'Purge' message is flashing on the controller and blowdown is being discharged through the blowdown valve:

The controller is operating correctly, but the blowdown valve is passing insufficient flow.

The valve or pipe work may be partially blocked, or it may be necessary to set the time between blowdown (T3) to zero).

Where a heat recovery system is installed, ensure that the blowdown is being properly discharged, and is not contaminating the feed-water system. Increasing boiler water TDS may also be caused by condensate or feed-water contamination from any source.

2) The boiler water TDS continues to fall although the 'Blowdown Cycle' message never flashes on the controller:

Check that the blowdown valve shuts off tight and ensure that the purge time (T1) is set as low as possible. If the boiler water TDS continues to fall ensure that other blow down are not excessive. Examples could be a leaking bottom blow down valve or leaking level control chamber drain valves.

3) The blowdown valve does not operate even though the 'Blowdown Cycle' message flashes on the controller display:

This may be caused by a blocked pneumatic line to the pneumatic Blowdown Valve. Often, the air-lines get clogged by dirt or fluid.

A globe valve, strainer and pressure regulator in the air line are recommended.

SECTION 6: TEMPERATURE TRANSMITTER

6.1 Introduction

The Stack, Steam, Feed-Water and Ambient Air Temperature Transmitters are two wire loop powered temperature transmitters. The primary sensing element is an RTD, PT-100. These sensors have built-in transmitters located on the head of the instruments. This are powered from the EffiMAX Signal Conditioning unit (24 V DC) and provides an output of 4-20 mA.

After installing the temperature transmitters, check the reading on the display unit. This should be between $+/- 2^{\circ}$ C of temperature measured at that location with any other calibrated and certified temperature-measuring instruments such as a thermometer.

These transmitters have different output ranges. These ranges are programmed into the Electronics unit from the factory. In case where the temperature transmitters are procured locally make sure the ranges are same as mentioned in the specifications.

SECTION 7: MAINTENANCE SCHEDULE

Given below is a matrix of the maintenance that needs to be carried out on each sub-system. Please ensure that maintenance is carried out regularly and as per the instructions given below it.

	Weekly	Monthly	Annual
TDS System	Yes		Yes
Охурго		Yes	
Temperature transmitters		Yes	

7.1 TDS System

• Weekly

Ensure following things are inline during maintenance schedule:

- i. Pneumatic (air) line is pressurized.
- ii. On purging, pneumatic valve is powered with 230VAC.
- iii. Blowdown water is actually discharged when the purge button is pressed (e.g. by temperature or sound)
- iv. Strainer is cleaned & strainer mesh is in good condition.

v. Upstream & downstream of blowdown skid isolation valves are fully open.

vi. There is no scaling on the sensor tip to have accurate sensing.

vii. Connection between field cables & sensor cables are intact.

Measure the boiler water TDS and perform the calibration.

Maintenance Schedule

Annually

Isolate the system by turning off Isolation valves (or when the boiler is empty) & remove the sensor from the sensor chamber. Clean the sensor tip and the insulator with a bristle brush or cloth. If damaged, replace the sensor (with the joint gasket). Internally clean and check sensor chamber, blowdown valve and check valve. If damaged, replace these items.

7.2 Oxypro

- Switch off the unit.
- Remove the unit from the stack.
- Clean the filter on its tip gently.
- Perform 20.9 % calibration on monthly basis.

7.3 Temperature Transmitter

• Remove the Temperature Transmitter from the field & have visual inspection of RTD stem & thermowell.

- Ensure that field cable running should not be in contact with hot surfaces like steam line or flue gas ducts.
- Compare the current displayed temperature value with corresponding resistance value of RTD using a standard RTD Resistance chart.

Procedure for on-site cross checking of RTD Temperature Sensor:

- i. Remove the TT from the process.
- ii. Ensure that there is no any physical damage to the TT.
- Remove the Red 1, Red 2 & white cable of RTD from Transmitter head.

EffiMAX	Maintenance Schedule
iv.	Allow the temperature of TT settle down to Ambient temperature.
v.	Measure the resistance between any of Red & white cable.
vi.	At ambient temp. consider of 25 deg C,
	R = (Temp * 0.39) + 100
	= (25*0.39) + 100
	= 9.75 + 100
	= 109.75 ohms

For resistance values refer the standard RTD chart.

So at ambient conditions cross check the resistance. If resistance is in Mega Ohms then it indicates the sensor is open OR if it is around 0 ohm then it indicates the sensor is short internally.

If there is any deviation, please perform the calibration as per the standard procedure or contact to concern person.

Spares List

SECTION 8: SPARES LIST

The following is a list of recommended spares available from Forbes Marshall:

	Item
ER CPL	J
ER AI C	Card
ER AO	Card
ER DI O	Card
ER DO	Card
Smart	Card
PWM-	RTD Card
EXOR 2	10 inch HMI
24Vdc	Power Supply
AM Sta	ation
Isolato	ors
Oil Flo	w Meter
Gas Flo	ow Meter
Signal	Splitter
Therm	owell
Stack 1	Temp transmitter
Steam	Temp transmitter
Feed v	vater Temp transmitter
Ambie	nt Temp transmitter
O2 Pro	be
Steam	Flow Meter

Page | 96

SECTION 9: DO's & DON'Ts

1. Do make sure that all the wiring is protected from physical damage.

2. Do ensure that the blow down valve downstream is fully open.

3. Don't clean the TDS sensor with a wire brush or other abrasive methods.

- 4. Don't disconnect wiring without switching OFF the power supply.
- 5. Don't attempt to repair the PCB assembly.
- 6. Don't fit a needle valve in the air line.
- 7. Don't turn the calibration potentiometer unless informed to FM.
- 8. Don't make any transmitter connection without switching OFF unit.
- 9. Don't short the transmitter inputs. It may cause analog input failure.
- 10.Do not touch transformer with Greasy/Oily/Dirty hands. Keep Touch screen in clean environment and wipe with clean cloth every day.

Log Report

SECTION 10: LOG REPORT

10.1 Data Logging Sheet

The report format given on the next page can be used for manually logging the readings of effiMAX, in case the data is not being logged on a PC.

Page 98

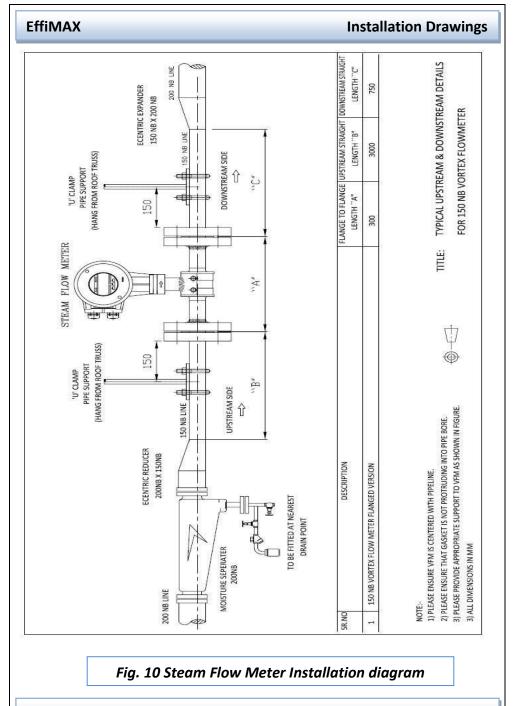
Log Report

EffiMAX Report:

Boiler ID:

Time	Steam Total (kg)	Fuel Total (kg)	Steam Flow (kg/h)	Efficiency (%)	Stack Temp (°C)	Stack Oxygen (%)	Steam Temp (° C)	FW Temp ([°] C)	Drum TDS (ppm)

Date:

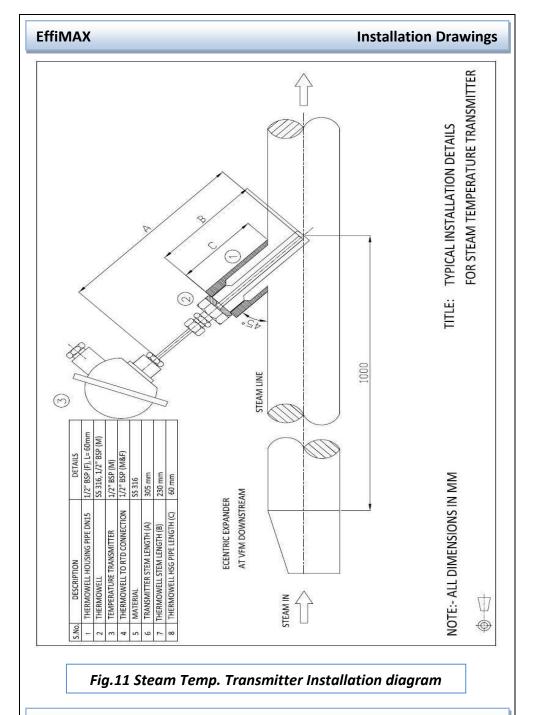

SECTION 11: INSTALLATION DRAWINGS

Below are the details of the Installation of the individual sensors.

These diagrams indicate typical installation of the sensors. Actual installation can vary as per the customer's specific requirements.

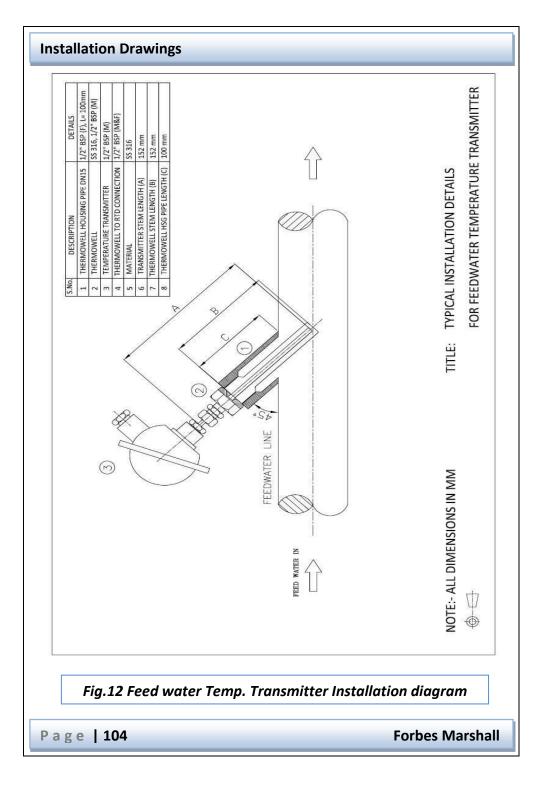
To get the feel of installation please check the installation videos, these videos will help for proper installation of filed instruments.

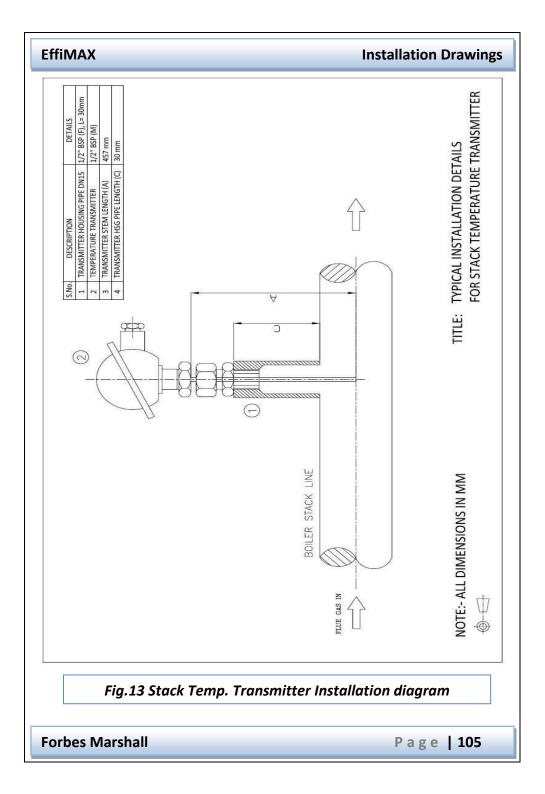
Page | 100

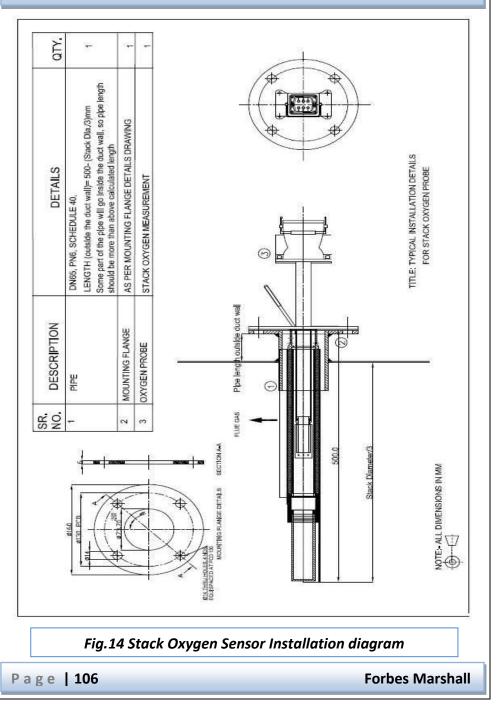


Installation Drawings

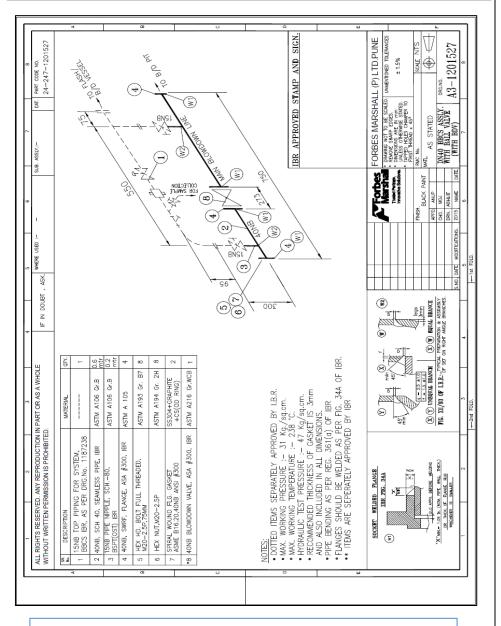
SIZE	ø	Δφ	SIZE	ø	Δφ
DN (mm)	mm (inch)	mm (inch)	DN (inch)	mm (inch)	mm (inch)
10S	8.9 (0.35)	0.4 (0.016)	3/8"S	8.9 (0.35)	0.4 (0.016)
10	12.6 (0.50)	0.4 (0.016)	3/8"	12.6 (0.50)	0.4
15	14.9 (0.59)	0.4 (0.016)	1/2"	14.9 (0.59)	0.4
20	20.9 (0.82)	0.4 (0.016)	3/4"	20.9 (0.82)	0.4
25	28.5 (1.12)	0.4	1"	26.7 (1.05)	0.4
40	43.1 (1.70)	0.4 (0.016)	1/5"	40.9 (1.61)	0.4
50	54.5 (2.15)	0.6	2"	52.6 (2.07)	0.0
80	82.5 (3.25)	0.6	3"	78 (3.07)	0.6
100	107.1 (4.22)	0.6	4"	102.4 (4.03)	0.6
150	159.3 (6.27)	0.8	6"	154.2	0.8
200	206.5 (8.13)	1 (0.039)	8"	202.7 (7.98)	(0.039


Steam Flow Meter Sizing Details


Page | 102


Forbes Marshall

Page | 103



Installation Drawings

Installation Drawings

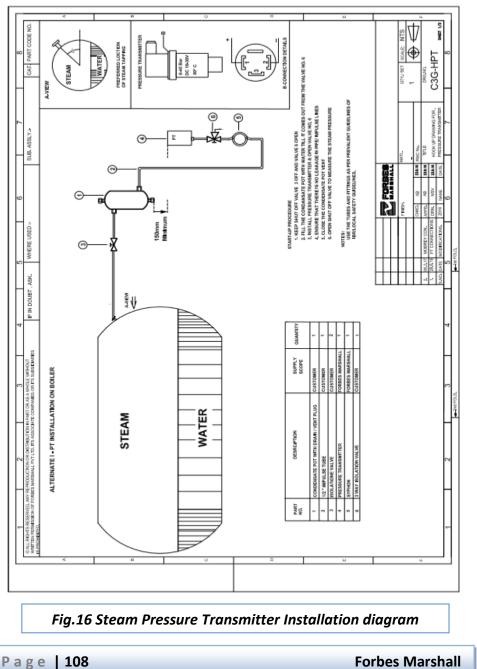


Fig.15 TDS Sensor Installation diagram

Forbes Marshall

Page | 107

Installation Drawings

Notes:

Forbes Marshall Krohne Marshall Forbes Marshall Arca Codel International Forbes Solar Forbes Vyncke Forbes Marshall Steam Systems
 Opp 105th Milestone
 B-85, Phase II, Chakan Indl Area

 Sombay Poona Road
 Sawardari, Chakan, Tal, Khed

 Kasarwadi, Pune - 411 034. INDIA
 Dist, Pune - 410 501. INDIA

 Tel: 91(0)20-27145795, 39858555
 Tel: 91(0)2135-393400

 Fax: 91(0)20-27147413
 Email : san/offorder
 Email : seg@forbesmarshall.com, ccmidc@forbesmarshall.com

A-34/35, MIDC H Block Pimpri, Pune - 411 018, INDIA, Tel : 91(0)20-27442020, 39851199 Fax: 91(0)20-27442040 CIN No.: U28996PN1985PTC037806 www.forbesmarshall.com

© All rights reserved. Any reproduction or distribution in part or as a whole without written permission of Forbes Marshall Pvt Ltd, its associate companies or its subsidiaries ("FM Group") is prohibited.

Information, designs or specifications in this document are subject to change without notice. Responsibility for suitability, selection, installation, use, operation or maintenance of the product(s) rests order) with the purchaser and/or user. The contents of this document are presented for informational purposes only. FM Group disclaim is abilities or losses that may be incurred as a consequence of the use of this information.